In Riemannian geometry, the Cheeger isoperimetric constant of a compact Riemannian manifold M is a positive real number h(M) defined in terms of the minimal area of a hypersurface that divides M into two disjoint pieces. In 1970, Jeff Cheeger proved an inequality that related the first nontrivial eigenvalue of the Laplace–Beltrami operator on M to h(M). This proved to be a very influential idea in Riemannian geometry and global analysis and inspired an analogous theory for graphs.

Property Value
dbo:abstract
  • In Riemannian geometry, the Cheeger isoperimetric constant of a compact Riemannian manifold M is a positive real number h(M) defined in terms of the minimal area of a hypersurface that divides M into two disjoint pieces. In 1970, Jeff Cheeger proved an inequality that related the first nontrivial eigenvalue of the Laplace–Beltrami operator on M to h(M). This proved to be a very influential idea in Riemannian geometry and global analysis and inspired an analogous theory for graphs. (en)
  • In der Mathematik bezeichnet die Cheeger-Konstante eine isoperimetrische Konstante von Graphen und Mannigfaltigkeiten. Anschaulich misst sie deren Stabilität: Eine große Cheeger-Konstante bedeutet, dass sich der Graph (bzw. die Mannigfaltigkeit) nur durch Entfernen einer großen Anzahl von Kanten (bzw. einer Hyperfläche großen Volumens) in nicht miteinander verbundene große Teile zerlegen lässt. Über die Cheeger-Buser-Ungleichung hängt die Cheeger-Konstante mit dem kleinsten positiven Eigenwert des Laplace-Operators zusammen. (de)
  • Изопериметрической константой Чигера компактного риманова многообразия M называется положительное вещественное число h(M), определяемое через минимальную площадь гиперповерхности, которая делит M на две непересекающиеся части равного объёма.В 1970-м году доказал неравенство, связывающее первое нетривиальное собственное число оператора Лапласа — Бельтрами на M с числом h(M).Это доказательство оказало большое влияние на риманову геометрию и способствовало созданию аналогичной концепции в теории графов. (ru)
  • Ізопериметри́чною ста́лою Чі́ґера компактного ріманового многовиду називають додатне дійсне число , що визначається через найменшу площу гіперповерхні, яка ділить на дві частини рівного об'єму, що не перетинаються. 1970 року Джеф Чіґер довів нерівність, що пов'язує перше нетривіальне власне число оператора Лапласа — Бельтрамі на з числом . Це доведення дуже вплинуло на ріманову геометрію і сприяло створенню аналогічної концепції в теорії графів. (uk)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 16531739 (xsd:integer)
dbo:wikiPageLength
  • 3924 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1091321349 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In Riemannian geometry, the Cheeger isoperimetric constant of a compact Riemannian manifold M is a positive real number h(M) defined in terms of the minimal area of a hypersurface that divides M into two disjoint pieces. In 1970, Jeff Cheeger proved an inequality that related the first nontrivial eigenvalue of the Laplace–Beltrami operator on M to h(M). This proved to be a very influential idea in Riemannian geometry and global analysis and inspired an analogous theory for graphs. (en)
  • In der Mathematik bezeichnet die Cheeger-Konstante eine isoperimetrische Konstante von Graphen und Mannigfaltigkeiten. Anschaulich misst sie deren Stabilität: Eine große Cheeger-Konstante bedeutet, dass sich der Graph (bzw. die Mannigfaltigkeit) nur durch Entfernen einer großen Anzahl von Kanten (bzw. einer Hyperfläche großen Volumens) in nicht miteinander verbundene große Teile zerlegen lässt. Über die Cheeger-Buser-Ungleichung hängt die Cheeger-Konstante mit dem kleinsten positiven Eigenwert des Laplace-Operators zusammen. (de)
  • Изопериметрической константой Чигера компактного риманова многообразия M называется положительное вещественное число h(M), определяемое через минимальную площадь гиперповерхности, которая делит M на две непересекающиеся части равного объёма.В 1970-м году доказал неравенство, связывающее первое нетривиальное собственное число оператора Лапласа — Бельтрами на M с числом h(M).Это доказательство оказало большое влияние на риманову геометрию и способствовало созданию аналогичной концепции в теории графов. (ru)
  • Ізопериметри́чною ста́лою Чі́ґера компактного ріманового многовиду називають додатне дійсне число , що визначається через найменшу площу гіперповерхні, яка ділить на дві частини рівного об'єму, що не перетинаються. 1970 року Джеф Чіґер довів нерівність, що пов'язує перше нетривіальне власне число оператора Лапласа — Бельтрамі на з числом . Це доведення дуже вплинуло на ріманову геометрію і сприяло створенню аналогічної концепції в теорії графів. (uk)
rdfs:label
  • Cheeger-Konstante (de)
  • Cheeger constant (en)
  • Константа Чигера (ru)
  • Стала Чіґера (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License