dbo:abstract
|
- In abstract algebra, a commutant-associative algebra is a nonassociative algebra over a field whose multiplication satisfies the following axiom: , where [A, B] = AB − BA is the commutator of A and B and(A, B, C) = (AB)C – A(BC) is the associator of A, B and C. In other words, an algebra M is commutant-associative if the commutant, i.e. the subalgebra of M generated by all commutators [A, B], is an associative algebra. (en)
- Коммутантно-ассоциативная алгебра — неассоциативная алгебра M над полем F, в которой бинарная мультипликативная операция подчиняется следующим аксиомам: 1. Тождеству коммутантной ассоциативности: , для всех .где — коммутатор элементов A и B, а — ассоциатор элементов A, B и C. 2. Условию билинейности: для всех и . Другими словами, алгебра M является коммутантно-ассоциативной, если коммутант, то есть подалгебра алгебры M образованная всеми коммутаторами , является ассоциативной алгеброй. Существует следующая взаимосвязь между коммутантно-ассоциативной алгеброй и алгеброй Валя. Замена умножения g(A,B) в алгебре M операцией коммутирования , превращает её в алгебру . При этом, если M является коммутантно-ассоциативной алгеброй, то будет алгеброй Валя. (ru)
|
rdfs:comment
|
- In abstract algebra, a commutant-associative algebra is a nonassociative algebra over a field whose multiplication satisfies the following axiom: , where [A, B] = AB − BA is the commutator of A and B and(A, B, C) = (AB)C – A(BC) is the associator of A, B and C. In other words, an algebra M is commutant-associative if the commutant, i.e. the subalgebra of M generated by all commutators [A, B], is an associative algebra. (en)
- Коммутантно-ассоциативная алгебра — неассоциативная алгебра M над полем F, в которой бинарная мультипликативная операция подчиняется следующим аксиомам: 1. Тождеству коммутантной ассоциативности: , для всех .где — коммутатор элементов A и B, а — ассоциатор элементов A, B и C. 2. Условию билинейности: для всех и . Другими словами, алгебра M является коммутантно-ассоциативной, если коммутант, то есть подалгебра алгебры M образованная всеми коммутаторами , является ассоциативной алгеброй. (ru)
|