An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In this article, we discuss certain applications of the dual quaternion algebra to 2D geometry. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which we will call the planar quaternions. The planar quaternions make up a four-dimensional algebra over the real numbers. Their primary application is in representing rigid body motions in 2D space. Unlike multiplication of dual numbers or of complex numbers, that of planar quaternions is non-commutative.

Property Value
dbo:abstract
  • In this article, we discuss certain applications of the dual quaternion algebra to 2D geometry. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which we will call the planar quaternions. The planar quaternions make up a four-dimensional algebra over the real numbers. Their primary application is in representing rigid body motions in 2D space. Unlike multiplication of dual numbers or of complex numbers, that of planar quaternions is non-commutative. (en)
  • Дуальні комплексні числа — чотиривимірні гіперкомплексні числа виду де — дійсні числа, — уявні одиниці такі як у кватерніона. — уявна одиниця дуальних чисел. Дуальне комплексне число можна записати у вигляді де — комплексні числа. (uk)
dbo:wikiPageID
  • 60883993 (xsd:integer)
dbo:wikiPageLength
  • 9881 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1117492287 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In this article, we discuss certain applications of the dual quaternion algebra to 2D geometry. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which we will call the planar quaternions. The planar quaternions make up a four-dimensional algebra over the real numbers. Their primary application is in representing rigid body motions in 2D space. Unlike multiplication of dual numbers or of complex numbers, that of planar quaternions is non-commutative. (en)
  • Дуальні комплексні числа — чотиривимірні гіперкомплексні числа виду де — дійсні числа, — уявні одиниці такі як у кватерніона. — уявна одиниця дуальних чисел. Дуальне комплексне число можна записати у вигляді де — комплексні числа. (uk)
rdfs:label
  • Applications of dual quaternions to 2D geometry (en)
  • Дуальні комплексні числа (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License