An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the equilateral dimension of a metric space is the maximum size of any subset of the space whose points are all at equal distances to each other. Equilateral dimension has also been called "metric dimension", but the term "metric dimension" also has many other inequivalent usages. The equilateral dimension of a -dimensional Euclidean space is , achieved by a regular simplex, and the equilateral dimension of a -dimensional vector space with the Chebyshev distance ( norm) is , achieved by a hypercube. However, the equilateral dimension of a space with the Manhattan distance ( norm) is not known; Kusner's conjecture, named after , states that it is exactly , achieved by a cross polytope.

Property Value
dbo:abstract
  • In mathematics, the equilateral dimension of a metric space is the maximum size of any subset of the space whose points are all at equal distances to each other. Equilateral dimension has also been called "metric dimension", but the term "metric dimension" also has many other inequivalent usages. The equilateral dimension of a -dimensional Euclidean space is , achieved by a regular simplex, and the equilateral dimension of a -dimensional vector space with the Chebyshev distance ( norm) is , achieved by a hypercube. However, the equilateral dimension of a space with the Manhattan distance ( norm) is not known; Kusner's conjecture, named after , states that it is exactly , achieved by a cross polytope. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 28417424 (xsd:integer)
dbo:wikiPageLength
  • 11120 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1107802470 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In mathematics, the equilateral dimension of a metric space is the maximum size of any subset of the space whose points are all at equal distances to each other. Equilateral dimension has also been called "metric dimension", but the term "metric dimension" also has many other inequivalent usages. The equilateral dimension of a -dimensional Euclidean space is , achieved by a regular simplex, and the equilateral dimension of a -dimensional vector space with the Chebyshev distance ( norm) is , achieved by a hypercube. However, the equilateral dimension of a space with the Manhattan distance ( norm) is not known; Kusner's conjecture, named after , states that it is exactly , achieved by a cross polytope. (en)
rdfs:label
  • Equilateral dimension (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License