dbo:abstract
|
- In mathematics, the Fekete problem is, given a natural number N and a real s ≥ 0, to find the points x1,...,xN on the 2-sphere for which the s-energy, defined by for s > 0 and by for s = 0, is minimal. For s > 0, such points are called s-Fekete points, and for s = 0, logarithmic Fekete points (see ).More generally, one can consider the same problem on the d-dimensional sphere, or on a Riemannian manifold (in which case ||xi −xj|| is replaced with the Riemannian distance between xi and xj). The problem originated in the paper by Michael Fekete who considered the one-dimensional, s = 0 case, answering a question of Issai Schur. An algorithmic version of the Fekete problem is number 7 on the list of problems discussed by . (en)
- En mathématiques, le problème de Fekete est, étant donné un entier naturel N et un réel s ≥ 0, de trouver les points x 1, ..., x N sur la 2-sphère pour lesquels la s-énergie, définie par pour s > 0 et par pour s = 0, est minimale. Pour s > 0, ces points sont appelés s-points de Fekete et, pour s = 0, points de Fekete logarithmiques (voir Saff & Kuijlaars (1997)). Plus généralement, on peut considérer le même problème sur la sphère d- dimensionnelle, ou sur une variété riemannienne (auquel cas ||xi − xj|| est remplacé par la distance riemannienne entre xi et xj ). Le problème trouve son origine dans l'article de Michael Fekete (1923), qui a considéré que le cas unidimensionnel avec s = 0 cas, répondant à une question d'Issai Schur. Une version algorithmique du problème de Fekete est le numéro 7 sur la liste des problèmes discutés par Smale (1998). (fr)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2773 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In mathematics, the Fekete problem is, given a natural number N and a real s ≥ 0, to find the points x1,...,xN on the 2-sphere for which the s-energy, defined by for s > 0 and by for s = 0, is minimal. For s > 0, such points are called s-Fekete points, and for s = 0, logarithmic Fekete points (see ).More generally, one can consider the same problem on the d-dimensional sphere, or on a Riemannian manifold (in which case ||xi −xj|| is replaced with the Riemannian distance between xi and xj). An algorithmic version of the Fekete problem is number 7 on the list of problems discussed by . (en)
- En mathématiques, le problème de Fekete est, étant donné un entier naturel N et un réel s ≥ 0, de trouver les points x 1, ..., x N sur la 2-sphère pour lesquels la s-énergie, définie par pour s > 0 et par pour s = 0, est minimale. Pour s > 0, ces points sont appelés s-points de Fekete et, pour s = 0, points de Fekete logarithmiques (voir Saff & Kuijlaars (1997)). Plus généralement, on peut considérer le même problème sur la sphère d- dimensionnelle, ou sur une variété riemannienne (auquel cas ||xi − xj|| est remplacé par la distance riemannienne entre xi et xj ). (fr)
|
rdfs:label
|
- Fekete problem (en)
- Problème de Fekete (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |