An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, especially potential theory, harmonic measure is a concept related to the theory of harmonic functions that arises from the solution of the classical Dirichlet problem. In probability theory, the harmonic measure of a subset of the boundary of a bounded domain in Euclidean space , is the probability that a Brownian motion started inside a domain hits that subset of the boundary. More generally, harmonic measure of an Itō diffusion X describes the distribution of X as it hits the boundary of D. In the complex plane, harmonic measure can be used to estimate the modulus of an analytic function inside a domain D given bounds on the modulus on the boundary of the domain; a special case of this principle is Hadamard's three-circle theorem. On simply connected planar domains, the

Property Value
dbo:abstract
  • In mathematics, especially potential theory, harmonic measure is a concept related to the theory of harmonic functions that arises from the solution of the classical Dirichlet problem. In probability theory, the harmonic measure of a subset of the boundary of a bounded domain in Euclidean space , is the probability that a Brownian motion started inside a domain hits that subset of the boundary. More generally, harmonic measure of an Itō diffusion X describes the distribution of X as it hits the boundary of D. In the complex plane, harmonic measure can be used to estimate the modulus of an analytic function inside a domain D given bounds on the modulus on the boundary of the domain; a special case of this principle is Hadamard's three-circle theorem. On simply connected planar domains, there is a close connection between harmonic measure and the theory of conformal maps. The term harmonic measure was introduced by Rolf Nevanlinna in 1928 for planar domains, although Nevanlinna notes the idea appeared implicitly in earlier work by Johansson, F. Riesz, M. Riesz, Carleman, Ostrowski and Julia (original order cited). The connection between harmonic measure and Brownian motion was first identified by Kakutani ten years later in 1944. (en)
  • 數學中,調和測度是調和函數理論中出現的一個概念。给定了一个解析函数的模在一个区域 D 边界上的界,能用调和测度去估计函数在区域内部的模。在一个非常相关的领域,一个 X 的调和测度描绘了 X 撞击 D 边界的分布。 (zh)
dbo:thumbnail
dbo:wikiPageID
  • 12141074 (xsd:integer)
dbo:wikiPageLength
  • 11519 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1091209997 (xsd:integer)
dbo:wikiPageWikiLink
dbp:first
  • E.D. (en)
dbp:id
  • H/h046500 (en)
dbp:last
  • Solomentsev (en)
dbp:title
  • Harmonic measure (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 數學中,調和測度是調和函數理論中出現的一個概念。给定了一个解析函数的模在一个区域 D 边界上的界,能用调和测度去估计函数在区域内部的模。在一个非常相关的领域,一个 X 的调和测度描绘了 X 撞击 D 边界的分布。 (zh)
  • In mathematics, especially potential theory, harmonic measure is a concept related to the theory of harmonic functions that arises from the solution of the classical Dirichlet problem. In probability theory, the harmonic measure of a subset of the boundary of a bounded domain in Euclidean space , is the probability that a Brownian motion started inside a domain hits that subset of the boundary. More generally, harmonic measure of an Itō diffusion X describes the distribution of X as it hits the boundary of D. In the complex plane, harmonic measure can be used to estimate the modulus of an analytic function inside a domain D given bounds on the modulus on the boundary of the domain; a special case of this principle is Hadamard's three-circle theorem. On simply connected planar domains, the (en)
rdfs:label
  • Harmonic measure (en)
  • 调和测度 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License