In mathematics, the Hitchin integrable system is an integrable system depending on the choice of a complex reductive group and a compact Riemann surface, introduced by Nigel Hitchin in 1987. It lies on the crossroads of algebraic geometry, the theory of Lie algebras and integrable system theory. It also plays an important role in geometric Langlands correspondence over the field of complex numbers; related to conformal field theory. A genus zero analogue of the Hitchin system was discovered by R. Garnier somewhat earlier as a certain limit of the Schlesinger equations, and Garnier solved his system by defining spectral curves. (The Garnier system is the classical limit of the Gaudin model. In turn, the Schlesinger equations are the classical limit of the Knizhnik–Zamolodchikov equations).

Property Value
dbo:abstract
  • In mathematics, the Hitchin integrable system is an integrable system depending on the choice of a complex reductive group and a compact Riemann surface, introduced by Nigel Hitchin in 1987. It lies on the crossroads of algebraic geometry, the theory of Lie algebras and integrable system theory. It also plays an important role in geometric Langlands correspondence over the field of complex numbers; related to conformal field theory. A genus zero analogue of the Hitchin system was discovered by R. Garnier somewhat earlier as a certain limit of the Schlesinger equations, and Garnier solved his system by defining spectral curves. (The Garnier system is the classical limit of the Gaudin model. In turn, the Schlesinger equations are the classical limit of the Knizhnik–Zamolodchikov equations). Almost all integrable systems of classical mechanics can be obtained as particular cases of the Garnier/Hitchin system or their common generalization defined by Bottacin and Markman in 1994. The Hitchin fibration is the map from the moduli space of Hitchin pairs to characteristic polynomials, a higher genus analogue of the map Garnier used to define the spectral curves. Ngô used Hitchin fibrations over finite fields in his proof of the fundamental lemma. (en)
  • 数学では、ヒッチン可積分系(英語: Hitchin system)は、1987年にが導入し、複素簡約群やコンパクトリーマン面の選択に依存した可積分系のことを言う。 ヒッチン系は、代数幾何と、リー代数論と、可積分系の理論の交点にあり、共形場理論とも関係し、複素数体上の幾何学的ラングランズ対応からで重要な役目も果たす。種数ゼロのヒッチン系は、クニーズニク・ザモロドチコフ方程式のある極限とみなすこともできる。古典力学の可積分系の大半はヒッチン系の特別な場合(もしくは、その有理型の一般化か、もしくは特異点を持つ一般化)の極限として得ることができる。 ヒッチンファイバー は、のモジュライ空間から特性方程式(characteristic polynomial)への写像である。Ngô では、(fundamental lemma)の証明に、有限体上のヒッチンファイバーを使った。 (ja)
  • 수학과 물리학에서 히친 계(Hitchin system)는 양-밀스 이론의 순간자를 수학화한 적분가능계이다. (ko)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 23652892 (xsd:integer)
dbo:wikiPageLength
  • 4810 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1120926983 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • 数学では、ヒッチン可積分系(英語: Hitchin system)は、1987年にが導入し、複素簡約群やコンパクトリーマン面の選択に依存した可積分系のことを言う。 ヒッチン系は、代数幾何と、リー代数論と、可積分系の理論の交点にあり、共形場理論とも関係し、複素数体上の幾何学的ラングランズ対応からで重要な役目も果たす。種数ゼロのヒッチン系は、クニーズニク・ザモロドチコフ方程式のある極限とみなすこともできる。古典力学の可積分系の大半はヒッチン系の特別な場合(もしくは、その有理型の一般化か、もしくは特異点を持つ一般化)の極限として得ることができる。 ヒッチンファイバー は、のモジュライ空間から特性方程式(characteristic polynomial)への写像である。Ngô では、(fundamental lemma)の証明に、有限体上のヒッチンファイバーを使った。 (ja)
  • 수학과 물리학에서 히친 계(Hitchin system)는 양-밀스 이론의 순간자를 수학화한 적분가능계이다. (ko)
  • In mathematics, the Hitchin integrable system is an integrable system depending on the choice of a complex reductive group and a compact Riemann surface, introduced by Nigel Hitchin in 1987. It lies on the crossroads of algebraic geometry, the theory of Lie algebras and integrable system theory. It also plays an important role in geometric Langlands correspondence over the field of complex numbers; related to conformal field theory. A genus zero analogue of the Hitchin system was discovered by R. Garnier somewhat earlier as a certain limit of the Schlesinger equations, and Garnier solved his system by defining spectral curves. (The Garnier system is the classical limit of the Gaudin model. In turn, the Schlesinger equations are the classical limit of the Knizhnik–Zamolodchikov equations). (en)
rdfs:label
  • Hitchin system (en)
  • ヒッチン系 (ja)
  • 히친 계 (ko)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License