An Entity of Type: Rule105846932, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative polynomial root-finding method published in 1970 by and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the special case of polynomials with real coefficients, commonly known as the "RPOLY" algorithm. The latter is "practically a standard in black-box polynomial root-finders". This article describes the complex variant. Given a polynomial P,

Property Value
dbo:abstract
  • The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative polynomial root-finding method published in 1970 by and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the special case of polynomials with real coefficients, commonly known as the "RPOLY" algorithm. The latter is "practically a standard in black-box polynomial root-finders". This article describes the complex variant. Given a polynomial P, with complex coefficients it computes approximations to the n zeros of P(z), one at a time in roughly increasing order of magnitude. After each root is computed, its linear factor is removed from the polynomial. Using this deflation guarantees that each root is computed only once and that all roots are found. The real variant follows the same pattern, but computes two roots at a time, either two real roots or a pair of conjugate complex roots. By avoiding complex arithmetic, the real variant can be faster (by a factor of 4) than the complex variant. The Jenkins–Traub algorithm has stimulated considerable research on theory and software for methods of this type. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 12106314 (xsd:integer)
dbo:wikiPageLength
  • 18630 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1058459263 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative polynomial root-finding method published in 1970 by and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the special case of polynomials with real coefficients, commonly known as the "RPOLY" algorithm. The latter is "practically a standard in black-box polynomial root-finders". This article describes the complex variant. Given a polynomial P, (en)
rdfs:label
  • Jenkins–Traub algorithm (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License