In theoretical computer science, the log-rank conjecture states that the deterministic communication complexity of a two-party Boolean function is polynomially related to the logarithm of the rank of its input matrix. Let denote the deterministic communication complexity of a function, and let denote the rank of its input matrix (over the reals). Since every protocol using up to bits partitions into at most monochromatic rectangles, and each of these has rank at most 1, The log-rank conjecture states that is also upper-bounded by a polynomial in the log-rank: for some constant ,
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |