dbo:abstract
|
- In tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant). A mixed tensor of type or valence , also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar. (en)
- Em análise tensorial, um tensor misto é um tensor que não é nem estritamente covariante nem estritamente contravariante; pelo menos um dos índices de um tensor misto será um subscrito (covariante) e, pelo menos, um dos índices será um sobrescrito (contravariante). Um tensor misto de tipo ou valência , também escrito "tipo (M, N)", com tanto M > 0 e N > 0, é um tensor o qual tem índices contravariantes M e índices covariantes N. Tal tensor pode ser definido como uma função linearque mapeia um (M + N)-toplo de M formas-um e N vetores a um escalar. (pt)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4445 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- In tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant). A mixed tensor of type or valence , also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar. (en)
- Em análise tensorial, um tensor misto é um tensor que não é nem estritamente covariante nem estritamente contravariante; pelo menos um dos índices de um tensor misto será um subscrito (covariante) e, pelo menos, um dos índices será um sobrescrito (contravariante). Um tensor misto de tipo ou valência , também escrito "tipo (M, N)", com tanto M > 0 e N > 0, é um tensor o qual tem índices contravariantes M e índices covariantes N. Tal tensor pode ser definido como uma função linearque mapeia um (M + N)-toplo de M formas-um e N vetores a um escalar. (pt)
|
rdfs:label
|
- Mixed tensor (en)
- Tensor misto (pt)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |