An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact. The Einstein field equations are where is the Einstein tensor, is the cosmological constant (sometimes taken to be zero for simplicity), is the metric tensor, is a constant, and is the stress–energy tensor.

Property Value
dbo:abstract
  • Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact. The Einstein field equations are where is the Einstein tensor, is the cosmological constant (sometimes taken to be zero for simplicity), is the metric tensor, is a constant, and is the stress–energy tensor. The Einstein field equations relate the Einstein tensor to the stress–energy tensor, which represents the distribution of energy, momentum and stress in the spacetime manifold. The Einstein tensor is built up from the metric tensor and its partial derivatives; thus, given the stress–energy tensor, the Einstein field equations are a system of ten partial differential equations in which the metric tensor can be solved for. (en)
  • Решить уравнение Эйнштейна — значит, найти вид метрического тензора пространства-времени. Задача ставится заданием граничных условий, координатных условий и написанием тензора энергии-импульса , который может описывать как точечный массивный объект, распределённую материю или энергию, так и всю Вселенную целиком. В зависимости от вида тензора энергии-импульса решения уравнения Эйнштейна можно разделить на вакуумные, полевые, распределённые, космологические и волновые. Существуют также чисто математические классификации решений, основанные на топологических или алгебраических свойствах описываемого ими пространства-времени, или, например, на алгебраической симметрии тензора Вейля данного пространства (классификация Петрова). (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2001621 (xsd:integer)
dbo:wikiPageLength
  • 8457 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124560943 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Решить уравнение Эйнштейна — значит, найти вид метрического тензора пространства-времени. Задача ставится заданием граничных условий, координатных условий и написанием тензора энергии-импульса , который может описывать как точечный массивный объект, распределённую материю или энергию, так и всю Вселенную целиком. В зависимости от вида тензора энергии-импульса решения уравнения Эйнштейна можно разделить на вакуумные, полевые, распределённые, космологические и волновые. Существуют также чисто математические классификации решений, основанные на топологических или алгебраических свойствах описываемого ими пространства-времени, или, например, на алгебраической симметрии тензора Вейля данного пространства (классификация Петрова). (ru)
  • Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact. The Einstein field equations are where is the Einstein tensor, is the cosmological constant (sometimes taken to be zero for simplicity), is the metric tensor, is a constant, and is the stress–energy tensor. (en)
rdfs:label
  • Solutions of the Einstein field equations (en)
  • Решения уравнений Эйнштейна (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License