dbo:abstract
|
- In the mathematical study of Lie algebras and Lie groups, a Satake diagram is a generalization of a Dynkin diagram introduced by Satake whose configurations classify simple Lie algebras over the field of real numbers. The Satake diagrams associated to a Dynkin diagram classify real forms of the complex Lie algebra corresponding to the Dynkin diagram. More generally, the Tits index or Satake–Tits diagram of a reductive algebraic group over a field is a generalization of the Satake diagram to arbitrary fields, introduced by Tits, that reduces the classification of reductive algebraic groups to that of anisotropic reductive algebraic groups. Satake diagrams are not the same as Vogan diagrams of a Lie group, although they look similar. (en)
- 군론에서 사타케 도표(영어: Satake diagram)는 반단순 리 군 또는 가약군의 구조를 나타내는 그래프의 일종이다. 딘킨 도표에 추가로 꼭짓점의 색깔(검은색 또는 흰색)과 흰 꼭짓점 위의 절대 갈루아 군의 작용을 그린 것이다. (ko)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 7044 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:authorlink
| |
dbp:last
| |
dbp:loc
| |
dbp:wikiPageUsesTemplate
| |
dbp:year
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- 군론에서 사타케 도표(영어: Satake diagram)는 반단순 리 군 또는 가약군의 구조를 나타내는 그래프의 일종이다. 딘킨 도표에 추가로 꼭짓점의 색깔(검은색 또는 흰색)과 흰 꼭짓점 위의 절대 갈루아 군의 작용을 그린 것이다. (ko)
- In the mathematical study of Lie algebras and Lie groups, a Satake diagram is a generalization of a Dynkin diagram introduced by Satake whose configurations classify simple Lie algebras over the field of real numbers. The Satake diagrams associated to a Dynkin diagram classify real forms of the complex Lie algebra corresponding to the Dynkin diagram. Satake diagrams are not the same as Vogan diagrams of a Lie group, although they look similar. (en)
|
rdfs:label
|
- 사타케 도표 (ko)
- Satake diagram (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |