An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In statistical mechanics, the transfer-matrix method is a mathematical technique which is used to write the partition function into a simpler form. It was introduced in 1941 by Hans Kramers and Gregory Wannier. In many one dimensional lattice models, the partition function is first written as an n-fold summation over each possible microstate, and also contains an additional summation of each component's contribution to the energy of the system within each microstate.

Property Value
dbo:abstract
  • In statistical mechanics, the transfer-matrix method is a mathematical technique which is used to write the partition function into a simpler form. It was introduced in 1941 by Hans Kramers and Gregory Wannier. In many one dimensional lattice models, the partition function is first written as an n-fold summation over each possible microstate, and also contains an additional summation of each component's contribution to the energy of the system within each microstate. (en)
  • 传递矩阵法(英語:Transfer-matrix method)是一种在统计力学计算中使用的数学技巧。其基本思想是,对于只有相邻粒子间存在相互作用的体系,其配分函数可写作以下形式: 其中v0和vN+1是p维向量,代表边界上的粒子的状态。Wk为所谓的“传递矩阵”,矩阵元素代表相邻两粒子各种状态下相互作用的统计权重,其连乘的展开即为系统各种可能的状态统计权重之和——配分函数。如果忽略边界,或视作周期性边界,配分函数即为 “tr”为矩阵的迹。数学上,矩阵的迹等于所有特征值之和。若所有传递矩阵Wk都相同,传递矩阵的连乘即为WN,其各特征值为W矩阵各特征值λ的N次方,又因为在热力学极限下粒子数目很大,只有最大的特征值对配分函数有明显贡献: 由此,配分函数可通过求解传递矩阵的特征值精确导出。 当一个体系可以分解为一系列只有相邻元素相作用的子体系时,可考虑应用传递矩阵法。例如,三维立方伊辛模型可视作一层层二维伊辛模型的堆砌,只有相邻的子系统之间有相互作用。子系统可能的状态数是p,那么传递矩阵Wk的维度为pxp,而矩阵元素的大小与各状态的统计权重有关。 传递矩阵法是一些统计力学模型精确解的关键。例如和解释溶液中线形高分子的,蛋白质-DNA结合模型的传递矩阵法解,以及物理学史上著名的拉斯·昂萨格给出的二维易辛模型解析解。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 8964423 (xsd:integer)
dbo:wikiPageLength
  • 5762 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1123362944 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In statistical mechanics, the transfer-matrix method is a mathematical technique which is used to write the partition function into a simpler form. It was introduced in 1941 by Hans Kramers and Gregory Wannier. In many one dimensional lattice models, the partition function is first written as an n-fold summation over each possible microstate, and also contains an additional summation of each component's contribution to the energy of the system within each microstate. (en)
  • 传递矩阵法(英語:Transfer-matrix method)是一种在统计力学计算中使用的数学技巧。其基本思想是,对于只有相邻粒子间存在相互作用的体系,其配分函数可写作以下形式: 其中v0和vN+1是p维向量,代表边界上的粒子的状态。Wk为所谓的“传递矩阵”,矩阵元素代表相邻两粒子各种状态下相互作用的统计权重,其连乘的展开即为系统各种可能的状态统计权重之和——配分函数。如果忽略边界,或视作周期性边界,配分函数即为 “tr”为矩阵的迹。数学上,矩阵的迹等于所有特征值之和。若所有传递矩阵Wk都相同,传递矩阵的连乘即为WN,其各特征值为W矩阵各特征值λ的N次方,又因为在热力学极限下粒子数目很大,只有最大的特征值对配分函数有明显贡献: 由此,配分函数可通过求解传递矩阵的特征值精确导出。 当一个体系可以分解为一系列只有相邻元素相作用的子体系时,可考虑应用传递矩阵法。例如,三维立方伊辛模型可视作一层层二维伊辛模型的堆砌,只有相邻的子系统之间有相互作用。子系统可能的状态数是p,那么传递矩阵Wk的维度为pxp,而矩阵元素的大小与各状态的统计权重有关。 传递矩阵法是一些统计力学模型精确解的关键。例如和解释溶液中线形高分子的,蛋白质-DNA结合模型的传递矩阵法解,以及物理学史上著名的拉斯·昂萨格给出的二维易辛模型解析解。 (zh)
rdfs:label
  • Transfer-matrix method (en)
  • 传递矩阵法 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License