摘要:本文围绕DeepSeek开源模型展开,提供从下载到本地运行的全面指南。DeepSeek由深言科技研发,具有高精度、高效率和可扩展性等特点,有不同版本适配多样场景。运行该模型需准备好满足要求的硬件,搭建含特定版本Python、PyTorch等的软件环境。可通过Hugging Face Hub或手动方式下载模型。本地运行时,简单推理可不额外准备数据,微调训练则需处理数据集。同时介绍了模型加载、配置、推理及微调训练的方法,并针对下载失败、内存不足、推理结果不理想等常见问题给出解决办法,助力开发者发挥模型潜力。
文章目录
DeepSeek开源模型:从下载到本地运行的全面指南
一、引言
在人工智能技术蓬勃发展的当下,开源大模型为科研人员和开发者提供了丰富的资源与无限的创新可能。DeepSeek 作为新兴的开源模型,凭借其卓越的性能和广泛的应用场景,吸引了众多关注。它在文本生成、知识问答、代码编写等多个领域都展现出了强大的能力。本文将详细且全面地介绍如何下载 DeepSeek 开源模型,并在本地环境中成功运行它,为你开启一段充满探索与创新的人工智能之旅。
二、DeepSeek开源模型概述
(一)模型背景与特点
DeepSeek 是由杭州深度求索开发的一系列开源大模型,它基于先进的 Transformer 架构,拥有海量的参数,能够学习到丰富的语言知识和模式。这些模