【基于C# + HALCON的工业视系统开发实战】三、手机屏幕划痕与外壳脏污检测:Halcon频域分析与局部阈值分割实战

摘要:手机制造中,0.1mm级划痕和0.3mm级脏污是影响产品良率的关键缺陷。本文基于C# .NET Core 6与HALCON 24.11,构建高灵敏度缺陷检测系统:通过频域分析提取细微划痕(高频成分),结合局部阈值分割识别外壳脏污,解决传统方法漏检率高、抗干扰弱的问题。实验数据显示,系统对0.1mm划痕检测率达96.8%,0.3mm脏污识别率97.5%,单帧处理时间42ms,满足产线30件/分钟的节拍要求。文中提供12组完整代码、8种调参策略及5类干扰解决方案,为手机缺陷检测提供从原理到落地的全流程技术指南。


AI领域优质专栏欢迎订阅!

DeepSeek深度应用

机器视觉:C# + HALCON

人工智能之深度学习

AI 赋能:Python 人工智能应用实战

AI原生应用开发实战:从架构设计到全栈落地


在这里插入图片描述


文章目录

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值