【人工智能之深度学习】3. 损失函数选择指南:交叉熵与MSE的数学原理及适用场景深度剖析(附PyTorch实战)

摘要:损失函数是深度学习模型优化的“指南针”,其选择直接决定模型收敛效率与任务适配性。本文系统解析均方误差(MSE)与交叉熵(CE)的核心差异:从欧氏空间视角推导MSE的数学表达( L M S E = 1 2 n ∑ ∣ ∣ y − y ^ ∣ ∣ 2 2 L_{MSE}=\frac{1}{2n}\sum||y-\hat{y}||_2^2 LMSE=2n1∣∣y

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI_DL_CODE

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值