摘要:损失函数是深度学习模型优化的“指南针”,其选择直接决定模型收敛效率与任务适配性。本文系统解析均方误差(MSE)与交叉熵(CE)的核心差异:从欧氏空间视角推导MSE的数学表达( L M S E = 1 2 n ∑ ∣ ∣ y − y ^ ∣ ∣ 2 2 L_{MSE}=\frac{1}{2n}\sum||y-\hat{y}||_2^2 LMSE=2n1∑∣∣y
【人工智能之深度学习】3. 损失函数选择指南:交叉熵与MSE的数学原理及适用场景深度剖析(附PyTorch实战)
于 2025-07-20 12:32:55 首次发布