摘要:发动机缸体作为核心零部件,其质量直接影响整机性能与寿命。本文基于.NET 6与HALCON 24.11开发全自动质检系统,融合3D点云测量与深度学习技术,实现平面度(公差0.05mm)、缸孔直径(±0.01mm)、表面缺陷(≥0.2mm)及螺纹孔完整性的一体化检测。系统采用多线程流水线架构,通过3D线扫相机采集点云数据,结合FitPrimitivesObjectModel3d实现高精度尺寸测量;基于深度学习模型实现表面缺陷分类,检出率达99.2%;通过Modbus TCP与PLC通信实现自动分拣。实际应用表明,系统检测节拍75秒/件,较传统方法提升140%,平面度检测精度达±0.02mm,综合合格率判定准确率99.7%,显著降低质量成本。
AI领域优质专栏欢迎订阅!