摘要:本文针对农业病虫害识别中田间光照不均、叶片遮挡、病虫害形态多样等难题,提出基于YOLOv11的轻量化解决方案。参考中国农科院植保所病虫害图谱标准(NY/T 2949-2016),采用PlantVillage叶片病害数据集,通过模拟田间自然干扰(阴影、水滴、泥土附着)增强数据真实性。创新设计MobileNetV4-Hybrid融合模型,结合知识蒸馏技术,将模型体积压缩至2.8MB,在骁龙778G设备上实现28ms推理延迟、25FPS帧率。开发微信小程序+云平台监测系统,支持田间实时拍照识别,完整流程耗时2.5秒,田间实测准确率达85%。文中提供数据集增强、模型训练、轻量化优化及小程序部署的完整代码,适合农业技术人员快速落地智慧农业项目。
优质专栏欢迎订阅!
【DeepSeek深度应用】【Python高阶开发:AI自动化与数据工程实战】
【机器视觉:C# + HALCON】【大模型微调实战:平民级微调技术全解】
【人工智能之深度学习】【AI 赋能:Python 人工智能应用实战】
【AI工程化落地与YOLOv8/v9实战】【C#工业上位机高级应用:高并发通信+性能优化】
【Java生产级避坑指南:高并发+性能调优终极实战】【Coze搞钱实战:零代码打造吸金AI助手】
文章目录
- 【YOLOv11工业级实战】06. YOLOv11农业实战:病虫害叶片识别(微信小程序+云平台实时监测|轻量化部署)
-
- 关键词
- 一、引言
-
- 1.1 农业病虫害识别的现实意义
- 1.2 农业场景的技术挑战
- 1.3 本文技术路线与结构
- 二、农业场景与数据挑战
-
- 2.1 病虫害识别的农业标准
-
- 2.1.1 病虫害分类与特征
- 2.1.2 识别系统性能要求
- 2.2 数据集构建方案
-
- 2.2.1 基础数据集选择
- 2.2.2 数据集扩展与田间增强
- 2.2.3 标注规范创新
- 2.2.4 数据集划分与验证
- 三、轻量化模型设计(移动端适配)
-
- 3.1 MobileNetV4-Hybrid融合方案
-
- 3.1.1 模型架构设计
- 3.1.2 模型配置文件
- 3.1.3 模型实现代码
- 3.2 知识蒸馏压缩技术
-
- 3.2.1 蒸馏原理与损失函数
- 3.2.2 蒸馏实现代码
- 3.2.3 蒸馏效果对比
- 3.3 模型量化与优化
- 四、微信小程序+云平台部署
-
- 4.1 系统架构设计
- 4.2 云函数开发(Python)
- 4.3 微信小