摘要:本文针对X光安检场景中物品重叠、材质干扰、形状扭曲等难题,提出基于YOLOv11的危险物品检测方案。参考公安部《GB 15208-2018》标准,采用SIXray X光安检数据集,通过物理模型生成多物品堆叠图像增强数据真实性。创新设计跨层级特征融合架构与材质感知注意力机制(CMA),解决重叠物品检测问题,重叠物品检出率达91%。开发嵌入式部署方案,在Jetson AGX Orin上实现18ms延迟、85%实际场景检出率。文中提供完整的数据增强、模型训练及嵌入式部署代码,适合智慧安防项目落地,满足机场、车站等场所的安检需求。
优质专栏欢迎订阅!
【DeepSeek深度应用】【Python高阶开发:AI自动化与数据工程实战】
【机器视觉:C# + HALCON】【大模型微调实战:平民级微调技术全解】
【人工智能之深度学习】【AI 赋能:Python 人工智能应用实战】
【AI工程化落地与YOLOv8/v9实战】【C#工业上位机高级应用:高并发通信+性能优化】
【Java生产级避坑指南:高并发+性能调优终极实战】【Coze搞钱实战:零代码打造吸金AI助手】
文章目录
- 【YOLOv11工业级实战】08. YOLOv11安防实战:危险物品检测(X光安检机图像解析|嵌入式系统部署)
-
- 关键词
- 一、引言
-
- 1.1 安检场景的现实需求
- 1.2 X光安检的技术挑战
- 1.3 本文技术路线与结构
- 二、安检场景与数据挑战
-
- 2.1 X光安检的行业标准
-
- 2.1.1 危险物品分类与识别要求
- 2.1.2 系统性能指标
- 2.2 数据集构建方案
-
- 2.2.1 基础数据集选择
- 2.2.2 数据集扩展与增强
- 2.2.3 标注格式设计
- 2.2.4 数据集划分与验证
- 三、多尺度特征融合技术
-
- 3.1 跨层级特征融合架构
-
- 3.1.1 模型配置文件
- 3.1.2 双向特征金字塔网络(BiFPN)
- 3.2 材质感知注意力机制
-
- 3.2.1 CMA注意力机制实现
- 3.2.2 集成CMA的YOLOv11模块
- 3.3 消融实验验证
- 四、模型训练与评估
-
- 4.1 训练环境配置
-
- 4.1.1 硬件要求
- 4.1.2 软件环境
- 4.2 数据集配置文件
- 4.3 训练参数优化
-
- 4.3.1 训练命令与参数解析
- 4.3.2 关键参数说明
- 4.4 模型评估指标
-
- 4.4.1 评估指标定义
- 4.4.2 评估代码实现
- 4.5 评估结果分析
- 五、嵌入式系统部署
-
- 5.1 硬件适配方案
- 5.2 模型轻量化与转换
-
- 5.2.1 模型量化
- 5.2.2 模型转换
- 5.3 系统集成架构
- 5.4 实时优化技术
-
- 5.4.1 帧间差分过滤
- 5.4.2 模型分时调度
- 5.4.3 实测性能对比
- 5.5 嵌入式部署代码
-
- 5.5.1 Jetson AGX Orin部署代码</