【YOLOv11工业级实战】08. YOLOv11安防实战:危险物品检测(X光安检机图像解析|嵌入式系统部署)

摘要:本文针对X光安检场景中物品重叠、材质干扰、形状扭曲等难题,提出基于YOLOv11的危险物品检测方案。参考公安部《GB 15208-2018》标准,采用SIXray X光安检数据集,通过物理模型生成多物品堆叠图像增强数据真实性。创新设计跨层级特征融合架构与材质感知注意力机制(CMA),解决重叠物品检测问题,重叠物品检出率达91%。开发嵌入式部署方案,在Jetson AGX Orin上实现18ms延迟、85%实际场景检出率。文中提供完整的数据增强、模型训练及嵌入式部署代码,适合智慧安防项目落地,满足机场、车站等场所的安检需求。


优质专栏欢迎订阅!

DeepSeek深度应用】【Python高阶开发:AI自动化与数据工程实战
机器视觉:C# + HALCON】【大模型微调实战:平民级微调技术全解
人工智能之深度学习】【AI 赋能:Python 人工智能应用实战
AI工程化落地与YOLOv8/v9实战】【C#工业上位机高级应用:高并发通信+性能优化
Java生产级避坑指南:高并发+性能调优终极实战】【Coze搞钱实战:零代码打造吸金AI助手


在这里插入图片描述


文章目录

  • 【YOLOv11工业级实战】08. YOLOv11安防实战:危险物品检测(X光安检机图像解析|嵌入式系统部署)
    • 关键词
    • 一、引言
      • 1.1 安检场景的现实需求
      • 1.2 X光安检的技术挑战
      • 1.3 本文技术路线与结构
    • 二、安检场景与数据挑战
      • 2.1 X光安检的行业标准
        • 2.1.1 危险物品分类与识别要求
        • 2.1.2 系统性能指标
      • 2.2 数据集构建方案
        • 2.2.1 基础数据集选择
        • 2.2.2 数据集扩展与增强
        • 2.2.3 标注格式设计
        • 2.2.4 数据集划分与验证
    • 三、多尺度特征融合技术
      • 3.1 跨层级特征融合架构
        • 3.1.1 模型配置文件
        • 3.1.2 双向特征金字塔网络(BiFPN)
      • 3.2 材质感知注意力机制
        • 3.2.1 CMA注意力机制实现
        • 3.2.2 集成CMA的YOLOv11模块
      • 3.3 消融实验验证
    • 四、模型训练与评估
      • 4.1 训练环境配置
        • 4.1.1 硬件要求
        • 4.1.2 软件环境
      • 4.2 数据集配置文件
      • 4.3 训练参数优化
        • 4.3.1 训练命令与参数解析
        • 4.3.2 关键参数说明
      • 4.4 模型评估指标
        • 4.4.1 评估指标定义
        • 4.4.2 评估代码实现
      • 4.5 评估结果分析
    • 五、嵌入式系统部署
      • 5.1 硬件适配方案
      • 5.2 模型轻量化与转换
        • 5.2.1 模型量化
        • 5.2.2 模型转换
      • 5.3 系统集成架构
      • 5.4 实时优化技术
        • 5.4.1 帧间差分过滤
        • 5.4.2 模型分时调度
        • 5.4.3 实测性能对比
      • 5.5 嵌入式部署代码
        • 5.5.1 Jetson AGX Orin部署代码</
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值