摘要:本文针对农业遥感中的作物混种识别、小地块分割、云层干扰三大难题,提出基于YOLOv11的多光谱融合解决方案。参考联合国粮农组织(FAO)作物分类标准,采用Sentinel-2多光谱卫星影像(10米分辨率),通过云掩膜处理消除云层干扰。创新设计通道级光谱注意力机制,融合13个波段特征,实现水稻、玉米、冬小麦92%以上的分类准确率。开发卫星-无人机协同系统,结合边缘计算实现田间实时监测,产量预估误差控制在10%以内。文中提供完整的多光谱数据处理、模型训练及无人机联动代码,适合农业合作社、农垦集团实现精准农业管理,为作物种植规划、产量预测提供技术支持。
优质专栏欢迎订阅!
【DeepSeek深度应用】【Python高阶开发:AI自动化与数据工程实战】
【机器视觉:C# + HALCON】【大模型微调实战:平民级微调技术全解】
【人工智能之深度学习】【AI 赋能:Python 人工智能应用实战】
【AI工程化落地与YOLOv8/v9实战】【C#工业上位机高级应用:高并发通信+性能优化】
【Java生产级避坑指南:高并发+性能调优终极实战】【Coze搞钱实战:零代码打造吸金AI助手】