摘要:本文聚焦水利监测中河道漂浮物识别的实际难题,结合水利部《河湖垃圾监测技术导则》,提出基于YOLOv11的解决方案。针对水流干扰、漂浮物变形和低光照等挑战,采用背景差分动态建模与三帧差分时间域特征融合技术,在RiverWaste数据集上实现湍流场景下93%的[email protected],误检率低至4.2%。详细介绍了海思Hi3519AV200/Hi3559AV100芯片的边缘部署流程,包括模型量化、硬解码优化及端到端处理实现。文中提供完整的代码示例、训练调参指南和高频问题解决方案,确保新手与进阶读者均可参考实施,为防汛环保等水利项目提供实用技术支持。
优质专栏欢迎订阅!
【DeepSeek深度应用】【Python高阶开发:AI自动化与数据工程实战】
【机器视觉:C# + HALCON】【大模型微调实战:平民级微调技术全解】
【人工智能之深度学习】【AI 赋能:Python 人工智能应用实战】
【AI工程化落地与YOLOv8/v9实战】【C#工业上位机高级应用:高并发通信+性能优化】
【Java生产级避坑指南:高并发+性能调优终极实战】【Coze搞钱实战:零代码打造吸金AI助手】