[USACO11JAN]道路和航线Roads and Planes(划分联通块+拓扑序Dijkstra)

本文深入解析了一道ACM竞赛中的图论问题,涉及城镇间通过道路和航线连接的复杂网络,讨论了如何寻找从特定城镇出发到达所有其他城镇的最经济路径。文章提出了一种创新的解决方案,利用拓扑排序和Dijkstra算法结合联通块的概念,有效处理了含有负权边的图。代码实现详尽,展示了如何通过划分联通块并按拓扑序松弛顶点来解决此类问题。

ACM题集:https://blog.csdn.net/weixin_39778570/article/details/83187443
图论:https://blog.csdn.net/weixin_39778570/article/details/87825212
题目链接:https://www.luogu.org/problemnew/show/P3008

题目描述:

Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查。他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T。这些城镇之间通过R条道路 (1 <= R <= 50,000,编号为1到R) 和P条航线 (1 <= P <= 50,000,编号为1到P) 连接。每条道路i或者航线i连接城镇A_i (1 <= A_i <= T)到B_i (1 <= B_i <= T),花费为C_i。

对于道路,0 <= C_i <= 10,000;然而航线的花费很神奇,花费C_i可能是负数(-10,000 <= C_i <= 10,000)。道路是双向的,可以从A_i到B_i,也可以从B_i到A_i,花费都是C_i。然而航线与之不同,只可以从A_i到B_i。

事实上,由于最近恐怖主义太嚣张,为了社会和谐,出台 了一些政策保证:如果有一条航线可以从A_i到B_i,那么保证不可能通过一些道路和航线从B_i回到A_i。由于FJ的奶牛世界公认十分给力,他需要运送奶牛到每一个城镇。他想找到从发送中心城镇S(1 <= S <= T) 把奶牛送到每个城镇的最便宜的方案,或者知道这是不可能的。

分析

数据把SPFA卡掉了。观察题目发现,航线,也就就是负边是单向的,并且A–>B将会导致B无法直接或间接地到达A。那么也就是说被航线所连接的两个点属于不同联通块,根据无环最短路的特点,我们可以按照拓扑序进行顶点松弛,这里可以先划分联通块,然后按照拓扑序对每个联通块进行松弛(即每个联通块内进行Dijkstra处理)。

Code
#include<bits/stdc++.h>
#define ll long long
#define fo(i,j,n) for(register int i=j; i<=n; ++i)
using namespace std;
const int N = 25005,M = 150005, INF=0x3f3f3f3f; // M为双向边加单向边
int T,R,P,S,d[N];
int head[N],Next[M],ver[M],edge[M],tot;
bool v[N];
int c[N],totc,deg[N];
queue<int> q; // 联通块的拓扑序
priority_queue<pair<int, int> > Q; // Dij 
void add(int x,int y, int z){
	ver[++tot]=y, edge[tot]=z;
	Next[tot]=head[x], head[x]=tot;
}
void dfs(int x){
	for(int i=head[x]; i; i=Next[i]){
		int y = ver[i];
		if(!c[y]){
			c[y]=totc;
			dfs(y);
		}
	}
}
void Dijkstra(){
	while(Q.size()){
		int x = Q.top().second; Q.pop();
		if(v[x])continue;
		v[x] = 1;
		for(int i=head[x]; i; i=Next[i]){
			int y = ver[i], wei = edge[i];
			if(d[y] > d[x]+wei){
				d[y] = d[x]+wei;
				if(c[y]==c[x]) Q.push(make_pair(-d[y], y));
			}
			// 对遍历到的点,判断是否不同联通块
			// 联通块入度减少,并且判0 
			if(c[x]!=c[y] && !--deg[c[y]])q.push(c[y]); 
		}
	}
}
int main(){
	cin>>T>>R>>P>>S;
	int x,y,z;
	fo(i,1,R){
		scanf("%d%d%d",&x,&y,&z);
		add(x,y,z); add(y,x,z);
	}
	// 划分联通块 
	fo(i,1,T){
		if(!c[i]){
			c[i]=++totc;
			dfs(i);
		}
	}
	fo(i,1,P){
		scanf("%d%d%d",&x,&y,&z);
		add(x,y,z);
		++deg[c[y]]; // 联通块的入度 
	}
	// 联通块之间进行拓扑排序
	q.push(c[S]); // 先加入起点
	fo(i,1,totc)if(!deg[i])q.push(i); // 加入0度的联通块
	// topsort
	memset(d, 127, sizeof(d)); // 这里最大值不能为0x3f,0x7f对应127 
	d[S] = 0;
	while(q.size()){
		int i = q.front(); q.pop();
		fo(j,1,T)
			if(c[j]==i)
				Q.push(make_pair(-d[j], j)); // 联通块 
		Dijkstra();
	} 
	fo(i,1,T){
		if(d[i]>INF)puts("NO PATH");
		else printf("%d\n",d[i]);
	}
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值