YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络

简介: YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络

一、本文介绍

本文记录的是基于MobileNet V1的YOLOv11轻量化改进方法研究MobileNet V1基于深度可分离卷积构建,其设计旨在满足移动和嵌入式视觉应用对小型低延迟模型的需求,具有独特的模型收缩超参数来灵活调整模型大小与性能。本文将MobileNet V1应用到YOLOv11中,有望借助其高效的结构和特性,提升YOLOv11在计算资源有限环境下的性能表现,同时保持一定的精度水平。

模型 参数量 计算量 推理速度
YOLOv11m 20.0M 67.6GFLOPs 3.5ms
Improved 15.4M 39.2GFLOPs 1.7ms

专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、MoblieNet V1设计原理

2.1 出发点

在许多实际应用如机器人、自动驾驶和增强现实中,识别任务需要在计算资源有限的平台上及时完成。但以往为提高准确性而构建的更深更复杂的网络,在尺寸和速度方面并不高效。因此,需要构建小型、低延迟的模型来满足移动和嵌入式视觉应用的设计要求。

2.2 结构原理

  • 深度可分离卷积(Depthwise Separable Convolution):这是MobileNet模型的核心构建模块。它将标准卷积分解为深度卷积(depthwise convolution)1×1卷积(pointwise convolution)
    • 对于MobileNet,深度卷积对每个输入通道应用单个滤波器,然后点卷积通过1×1卷积组合深度卷积的输出。标准卷积在一步中同时过滤和组合输入以生成新的输出,而深度可分离卷积将此过程分为两步,从而大幅降低了计算量和模型尺寸

      例如,一个标准卷积层输入为$D{F}×D{F}×M$特征图$F$,输出为$D{F}×D{F}×N$特征图$G$,其计算成本为$D{K}·D{K}·M·N·D{F}·D{F}$,而深度可分离卷积的计算成本为$D{K}·D{K}·M·D{F}·D{F}+M·N·D{F}·D{F}$,相比之下计算量大幅减少,如在实际应用中 MobileNet 使用 3×3 深度可分离卷积比标准卷积节省 8 到 9 倍的计算量且精度损失较小。

  • 网络结构:除了第一层是全卷积外,MobileNet 结构基于深度可分离卷积构建。所有层(除最终全连接层)后面都跟着批量归一化(batchnorm)ReLU 非线性激活函数。下采样通过深度卷积中的步长卷积以及第一层来处理,最后在全连接层之前使用平均池化将空间分辨率降为 1。
    • 将深度卷积和点卷积视为单独的层,MobileNet 共有 28 层。在计算资源分配上,95%的计算时间花费在 1x1 卷积上,且 75%的参数也在 1x1 卷积中,几乎所有额外参数都在全连接层。

在这里插入图片描述

  • 模型收缩超参数:包括宽度乘数(width multiplier)和分辨率乘数(resolution multiplier)。宽度乘数$\alpha$用于均匀地使网络每层变窄,对于给定层和宽度乘数$\alpha$,输入通道数$M$变为$\alpha M$,输出通道数$N$变为$\alpha N$,其计算成本为$D{K}·D{K}·\alpha M·D{F}·D{F}+\alpha M·\alpha N·D{F}·D{F}$,能以大致$\alpha^{2}$的比例二次减少计算成本和参数数量。分辨率乘数$\rho$应用于输入图像和每一层的内部表示,通过隐式设置输入分辨率来降低计算成本,计算成本为$D{K}\cdot D{K}\cdot \alpha M\cdot \rho D{F}\cdot \rho D{F}+\alpha M\cdot \alpha N\cdot \rho D{F}\cdot \rho D{F}$,能使计算成本降低$\rho^{2}$。

2.3 优势

  • 计算效率高:通过深度可分离卷积以及模型收缩超参数的应用,在保证一定精度的前提下,大幅减少了计算量和模型参数。
    • 灵活性强:宽度乘数和分辨率乘数可以根据不同的应用需求和资源限制,灵活地调整模型的大小、计算成本和精度,以实现合理的权衡。

论文:https://arxiv.org/pdf/1704.04861
源码:https://github.com/Zehaos/MobileNet

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/144980103

目录
相关文章
|
7月前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
208 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
7月前
|
机器学习/深度学习 移动开发 测试技术
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
237 1
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
|
4月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
121 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
7月前
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
197 2
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
|
7月前
|
机器学习/深度学习 文件存储 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
134 1
|
15天前
|
机器学习/深度学习 算法 机器人
【PID】基于人工神经网络的PID控制器,用于更好的系统响应研究(Matlab&Simulink代码实现)
【PID】基于人工神经网络的PID控制器,用于更好的系统响应研究(Matlab&Simulink代码实现)
|
18天前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
|
12天前
|
机器学习/深度学习 传感器 运维
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
|
12天前
|
机器学习/深度学习 数据采集 算法
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)
|
16天前
|
机器学习/深度学习 数据采集 边缘计算
【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)
【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)

热门文章

最新文章