微店商品列表API响应数据python解析

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 微店商品列表API为开发者提供稳定高效获取商品信息的途径,支持HTTP GET/POST请求,返回JSON格式数据,含商品ID、名称、价格、库存等字段,适用于电商数据分析与展示平台搭建等场景。本文提供Python调用示例,助您快速上手。

一、引言
微店作为国内知名电商平台,为开发者提供了丰富的API接口,其中商品列表API是获取店铺商品信息的重要途径。该接口可用于电商数据分析、商品展示平台搭建、价格监控系统开发等多种场景‌。通过API获取商品数据比传统爬虫方式更稳定高效,且符合平台规范‌。
二、接口概述
基本特性

‌请求方式‌:支持HTTP GET/POST请求,推荐RESTful风格‌。
‌数据格式‌:返回JSON格式数据,包含商品ID、名称、价格、库存、图片链接等核心字段‌。
‌分页参数‌:支持page_no(页码)和page_size(每页数量)参数,默认每页20条,最大100条‌。

三、Python请求示例

python 
# coding:utf-8
"""
Compatible for python2.x and python3.x
requirement: pip install requests
"""
from __future__ import print_function
import requests
# 配置参数 API_URL = "c0b.cc/R4rbK2 wechatid:Taobaoapi2014 " 
app_key = "YOUR_APP_KEY" q = "衣服" # 目标关键词
# 请求示例 url 默认请求参数已经做URL编码
url = "micro/item_search/?key=<您自己的apiKey>&q=女装&page="
headers = {
   
    "Accept-Encoding": "gzip",
    "Connection": "close"
}
if __name__ == "__main__":
    r = requests.get(url, headers=headers)
    json_obj = r.json()
    print(json_obj)

该示例展示了如何通过Python调用微店商品列表API,包含错误处理和基本数据解析。

相关文章
|
3天前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
5天前
|
JSON 安全 API
Python处理JSON数据的最佳实践:从基础到进阶的实用指南
JSON作为数据交换通用格式,广泛应用于Web开发与API交互。本文详解Python处理JSON的10个关键实践,涵盖序列化、复杂结构处理、性能优化与安全编程,助开发者高效应对各类JSON数据挑战。
51 1
|
7天前
|
JSON API 开发者
深度分析阿里妈妈API接口,用Python脚本实现
阿里妈妈是阿里巴巴旗下营销平台,提供淘宝联盟、直通车等服务,支持推广位管理、商品查询等API功能。本文详解其API调用方法,重点实现商品推广信息(佣金、优惠券)获取,并提供Python实现方案。
|
4天前
|
运维 算法 新能源
基于风光储能和需求响应的微电网日前经济调度(Python代码实现)
基于风光储能和需求响应的微电网日前经济调度(Python代码实现)
|
5天前
|
API Python
Python采集淘宝店铺所有商品API接口指南
淘宝没有公开的官方API供采集店铺商品数据,但可以通过以下几种方法获取商品信息。需要注意的是,淘宝有严格的反爬机制,直接采集可能违反其服务条款。
|
6天前
|
API 数据安全/隐私保护 开发者
深度分析苏宁API接口,用Python脚本实现
深度分析苏宁API接口,用Python脚本实现
|
9月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
292 0
|
9月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
197 2
|
9月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
193 2
|
9月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南

推荐镜像

更多