با مجموعهها، منظم بمانید
ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
ML Kit میتواند با استفاده از مدل روی دستگاه، پاسخهای کوتاهی به پیامها ایجاد کند.
برای ایجاد پاسخهای هوشمند، فهرستی از پیامهای اخیر را در یک مکالمه به ML Kit ارسال میکنید. اگر ML Kit تشخیص دهد که مکالمه به زبان انگلیسی است و مکالمه دارای موضوع بالقوه حساس نیست، ML Kit حداکثر سه پاسخ ایجاد می کند که می توانید آنها را به کاربر خود پیشنهاد دهید.
مدل به طور ایستا به برنامه شما در زمان ساخت پیوند داده می شود.
مدل به صورت پویا از طریق خدمات Google Play دانلود می شود.
تاثیر اندازه برنامه
حدود 5.7 مگابایت افزایش حجم.
افزایش حجم حدود 200 کیلوبایت
زمان اولیه سازی
مدل فورا موجود است
ممکن است قبل از اولین استفاده باید منتظر بمانید تا مدل دانلود شود.
آن را امتحان کنید
با برنامه نمونه بازی کنید تا نمونه استفاده از این API را ببینید.
قبل از شروع
در فایل build.gradle در سطح پروژه خود، مطمئن شوید که مخزن Maven Google را در هر دو بخش buildscript و allprojects خود قرار دهید.
وابستگی های کتابخانه های اندروید ML Kit را به فایل gradle سطح برنامه ماژول خود اضافه کنید، که معمولا app/build.gradle است. یکی از وابستگی های زیر را بر اساس نیاز خود انتخاب کنید:
برای بستهبندی مدل با برنامهتان:
dependencies{// ...// Use this dependency to bundle the model with your appimplementation'com.google.mlkit:smart-reply:17.0.4'}
اگر انتخاب کردید که از مدل در سرویسهای Google Play استفاده کنید، میتوانید برنامه خود را طوری پیکربندی کنید که پس از نصب برنامه از فروشگاه Play، مدل را بهطور خودکار در دستگاه دانلود کنید. با افزودن اعلان زیر به فایل AndroidManifest.xml برنامه خود:
همچنین میتوانید صریحاً در دسترس بودن مدل را بررسی کنید و از طریق سرویسهای Google Play ModuleInstallClient API درخواست دانلود کنید.
اگر دانلودهای مدل در زمان نصب را فعال نکنید یا دانلود صریح درخواست نکنید، اولین باری که مولد پاسخ هوشمند را اجرا میکنید، مدل دانلود میشود. درخواستهایی که قبل از تکمیل دانلود ارائه میکنید، نتیجهای ندارند.
1. یک شی تاریخچه مکالمه ایجاد کنید
برای ایجاد پاسخهای هوشمند، List از اشیاء TextMessage را با ترتیب زمانی به ML Kit ارسال میکنید که ابتدا اولین مُهر زمانی را به همراه دارد.
هر زمان که کاربر پیامی ارسال کرد، پیام و مهر زمانی آن را به تاریخچه مکالمه اضافه کنید:
کاتلین
conversation.add(TextMessage.createForLocalUser("heading out now",System.currentTimeMillis()))
جاوا
conversation.add(TextMessage.createForLocalUser("heading out now",System.currentTimeMillis()));
هر زمان که کاربر پیامی دریافت کرد، پیام، مهر زمانی و شناسه کاربری فرستنده را به تاریخچه مکالمه اضافه کنید. شناسه کاربر میتواند هر رشتهای باشد که به طور منحصربهفرد فرستنده را در مکالمه شناسایی میکند. شناسه کاربر نیازی به مطابقت با دادههای کاربر ندارد و شناسه کاربر نیازی ندارد بین مکالمه یا فراخوانهای تولیدکننده پاسخ هوشمند سازگار باشد.
کاتلین
conversation.add(TextMessage.createForRemoteUser("Are you coming back soon?",System.currentTimeMillis(),userId))
جاوا
conversation.add(TextMessage.createForRemoteUser("Are you coming back soon?",System.currentTimeMillis(),userId));
یک شی تاریخچه مکالمه مانند مثال زیر است:
مهر زمان
شناسه کاربر
isLocalUser است
پیام
پنجشنبه 21 فوریه 13:13:39 PST 2019
درست است
در راه هستی؟
پنجشنبه 21 فوریه 13:15:03 PST 2019
FRIEND0
نادرست
دیر آمدم، ببخشید!
ML Kit پاسخ به آخرین پیام در تاریخچه مکالمه را پیشنهاد می کند. آخرین پیام باید از یک کاربر غیر محلی باشد. در مثال بالا، آخرین پیام در مکالمه از طرف کاربر غیر محلی FRIEND0 است. وقتی از pass ML Kit این گزارش استفاده میکنید، پاسخهایی را به پیام FRIENDO پیشنهاد میکند: "دیر اجرا شد، متاسفم!"
2. پاسخ پیام را دریافت کنید
برای ایجاد پاسخهای هوشمند به یک پیام، نمونهای از SmartReplyGenerator را دریافت کنید و تاریخچه مکالمه را به متد suggestReplies() آن ارسال کنید:
کاتلین
valsmartReplyGenerator=SmartReply.getClient()smartReply.suggestReplies(conversation).addOnSuccessListener{result->if(result.getStatus()==SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE){// The conversation's language isn't supported, so// the result doesn't contain any suggestions.}elseif(result.getStatus()==SmartReplySuggestionResult.STATUS_SUCCESS){// Task completed successfully// ...}}.addOnFailureListener{// Task failed with an exception// ...}
جاوا
SmartReplyGeneratorsmartReply=SmartReply.getClient();smartReply.suggestReplies(conversation).addOnSuccessListener(newOnSuccessListener(){@OverridepublicvoidonSuccess(SmartReplySuggestionResultresult){if(result.getStatus()==SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE){// The conversation's language isn't supported, so// the result doesn't contain any suggestions.}elseif(result.getStatus()==SmartReplySuggestionResult.STATUS_SUCCESS){// Task completed successfully// ...}}}).addOnFailureListener(newOnFailureListener(){@OverridepublicvoidonFailure(@NonNullExceptione){// Task failed with an exception// ...}});
اگر عملیات با موفقیت انجام شود، یک شی SmartReplySuggestionResult به کنترل کننده موفقیت ارسال می شود. این شی حاوی لیستی از حداکثر سه پاسخ پیشنهادی است که می توانید به کاربر خود ارائه دهید:
توجه داشته باشید که اگر مدل از مرتبط بودن پاسخهای پیشنهادی مطمئن نباشد، مکالمه ورودی به زبان انگلیسی نباشد، یا اگر مدل موضوع حساس را تشخیص دهد، ممکن است ML Kit به نتایجی برنگردد.
تاریخ آخرین بهروزرسانی 2025-08-15 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2025-08-15 بهوقت ساعت هماهنگ جهانی."],[[["\u003cp\u003eML Kit's Smart Reply API generates up to three relevant reply suggestions for English conversations using an on-device model.\u003c/p\u003e\n"],["\u003cp\u003eYou can integrate Smart Reply by either bundling the model with your app (larger size) or dynamically downloading it (smaller size, requires Google Play Services).\u003c/p\u003e\n"],["\u003cp\u003eTo use the API, provide a conversation history as input, and ML Kit will suggest replies to the last message if it's from a non-local user.\u003c/p\u003e\n"],["\u003cp\u003eThe suggested replies are returned only if the conversation is in English, does not contain sensitive content, and the model is confident in their relevance.\u003c/p\u003e\n"]]],["ML Kit generates up to three smart replies to messages in English conversations, excluding sensitive content. This is done by passing a chronologically ordered list of `TextMessage` objects to the `suggestReplies()` method. The API can use a bundled model (5.7 MB increase) or an unbundled model (200 KB increase) via Google Play Services. The unbundled model may have a delay before the first use, and may not include any results. Implementation requires adding the appropriate library dependency and building the conversation history.\n"],null,["ML Kit can generate short replies to messages using an on-device model.\n\nTo generate smart replies, you pass ML Kit a log of recent messages in a\nconversation. If ML Kit determines the conversation is in English, and that\nthe conversation doesn't have potentially sensitive subject matter, ML Kit\ngenerates up to three replies, which you can suggest to your user.\n\n\u003cbr /\u003e\n\n| This API is available using either an unbundled library that must be downloaded before use or a bundled library that increases your app size. See [this guide](/ml-kit/tips/installation-paths) for more information on the differences between the two installation options.\n\n| | Bundled | Unbundled |\n|-------------------------|-------------------------------------------------------|------------------------------------------------------------|\n| **Library name** | `com.google.mlkit:smart-reply` | `com.google.android.gms:play-services-mlkit-smart-reply` |\n| **Implementation** | Model is statically linked to your app at build time. | Model is dynamically downloaded via Google Play Services. |\n| **App size impact** | About 5.7 MB size increase. | About 200 KB size increase. |\n| **Initialization time** | Model is available immediately. | Might have to wait for model to download before first use. |\n\n| **Note:** The unbundled version of Smart Reply is currently offered in beta, which means it might be changed in backward-incompatible ways and is not subject to any SLA or deprecation policy.\n\nTry it out\n\n- Play around with [the sample app](https://github.com/googlesamples/mlkit/tree/master/android/smartreply) to see an example usage of this API.\n\nBefore you begin This API requires Android API level 21 or above. Make sure that your app's build file uses a `minSdkVersion` value of 21 or higher.\n\n1. In your project-level `build.gradle` file, make sure to include Google's\n Maven repository in both your `buildscript` and `allprojects` sections.\n\n2. Add the dependencies for the ML Kit Android libraries to your module's\n app-level gradle file, which is usually `app/build.gradle`. Choose one of\n the following dependencies based on your needs:\n\n - To bundle the model with your app:\n\n dependencies {\n // ...\n // Use this dependency to bundle the model with your app\n implementation 'com.google.mlkit:smart-reply:17.0.4'\n }\n\n - To use the model in Google Play Services:\n\n dependencies {\n // ...\n // Use this dependency to use the dynamically downloaded model in Google Play Services\n implementation 'com.google.android.gms:play-services-mlkit-smart-reply:16.0.0-beta1'\n }\n\n If you choose to use the model in Google Play Services, you can configure\n your app to automatically download the model to the device after your app is\n installed from the Play Store. By adding the following declaration to your\n app's `AndroidManifest.xml` file: \n\n \u003capplication ...\u003e\n ...\n \u003cmeta-data\n android:name=\"com.google.mlkit.vision.DEPENDENCIES\"\n android:value=\"smart_reply\" \u003e\n \u003c!-- To use multiple models: android:value=\"smart_reply,model2,model3\" --\u003e\n \u003c/application\u003e\n\n You can also explicitly check the model availability and request download through\n Google Play services [ModuleInstallClient API](https://developers.google.com/android/guides/module-install-apis).\n\n If you don't enable install-time model downloads or request explicit download,\n the model is downloaded the first time you run the smart reply generator.\n Requests you make before the download has completed produce no results.\n\n\n 1. Create a conversation history object\n\n To generate smart replies, you pass ML Kit a chronologically-ordered `List`\n of `TextMessage` objects, with the earliest timestamp first.\n\n Whenever the user sends a message, add the message and its timestamp to the\n conversation history: \n\n Kotlin \n\n ```kotlin\n conversation.add(TextMessage.createForLocalUser(\n \"heading out now\", System.currentTimeMillis()))\n ```\n\n Java \n\n ```java\n conversation.add(TextMessage.createForLocalUser(\n \"heading out now\", System.currentTimeMillis()));\n ```\n\n Whenever the user receives a message, add the message, its timestamp, and the\n sender's user ID to the conversation history. The user ID can be any string that\n uniquely identifies the sender within the conversation. The user ID doesn't need\n to correspond to any user data, and the user ID doesn't need to be consistent\n between conversation or invocations of the smart reply generator. \n\n Kotlin \n\n ```kotlin\n conversation.add(TextMessage.createForRemoteUser(\n \"Are you coming back soon?\", System.currentTimeMillis(), userId))\n ```\n\n Java \n\n ```java\n conversation.add(TextMessage.createForRemoteUser(\n \"Are you coming back soon?\", System.currentTimeMillis(), userId));\n ```\n\n A conversation history object looks like the following example:\n\n | Timestamp | userID | isLocalUser | Message |\n |------------------------------|---------|-------------|----------------------|\n | Thu Feb 21 13:13:39 PST 2019 | | true | are you on your way? |\n | Thu Feb 21 13:15:03 PST 2019 | FRIEND0 | false | Running late, sorry! |\n\n ML Kit suggests replies to the last message in a conversation history. The last message\n should be from a non-local user. In the example above, the last message in the conversation\n is from the non-local user FRIEND0. When you use pass ML Kit this log, it suggests\n replies to FRIENDO's message: \"Running late, sorry!\"\n\n 2. Get message replies\n\n To generate smart replies to a message, get an instance of `SmartReplyGenerator`\n and pass the conversation history to its `suggestReplies()` method: \n\n Kotlin \n\n ```kotlin\n val smartReplyGenerator = SmartReply.getClient()\n smartReply.suggestReplies(conversation)\n .addOnSuccessListener { result -\u003e\n if (result.getStatus() == SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE) {\n // The conversation's language isn't supported, so\n // the result doesn't contain any suggestions.\n } else if (result.getStatus() == SmartReplySuggestionResult.STATUS_SUCCESS) {\n // Task completed successfully\n // ...\n }\n }\n .addOnFailureListener {\n // Task failed with an exception\n // ...\n }\n ```\n\n Java \n\n ```java\n SmartReplyGenerator smartReply = SmartReply.getClient();\n smartReply.suggestReplies(conversation)\n .addOnSuccessListener(new OnSuccessListener() {\n @Override\n public void onSuccess(SmartReplySuggestionResult result) {\n if (result.getStatus() == SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE) {\n // The conversation's language isn't supported, so\n // the result doesn't contain any suggestions.\n } else if (result.getStatus() == SmartReplySuggestionResult.STATUS_SUCCESS) {\n // Task completed successfully\n // ...\n }\n }\n })\n .addOnFailureListener(new OnFailureListener() {\n @Override\n public void onFailure(@NonNull Exception e) {\n // Task failed with an exception\n // ...\n }\n });\n ```\n\n If the operation succeeds, a `SmartReplySuggestionResult` object is passed to\n the success handler. This object contains a list of up to three suggested replies,\n which you can present to your user: \n\n Kotlin \n\n ```kotlin\n for (suggestion in result.suggestions) {\n val replyText = suggestion.text\n }\n ```\n\n Java \n\n ```java\n for (SmartReplySuggestion suggestion : result.getSuggestions()) {\n String replyText = suggestion.getText();\n }\n ```\n\n Note that ML Kit might not return results if the model isn't confident in\n the relevance of the suggested replies, the input conversation isn't in\n English, or if the model detects sensitive subject matter."]]