ML Kit, poz algılama için iki optimize edilmiş SDK sağlar.
SDK Adı | pose-detection | pose-detection-accurate |
---|---|---|
Uygulama | Kod ve öğeler, derleme sırasında uygulamanıza statik olarak bağlanır. | Kod ve öğeler, derleme sırasında uygulamanıza statik olarak bağlanır. |
Uygulama boyutunun etkisi (kod ve öğeler dahil) | ~10,1 MB | ~13,3 MB |
Performans | Pixel 3XL: ~30FPS | Pixel 3XL: CPU ile ~23 FPS, GPU ile ~30 FPS |
Deneyin
- Bu API'nin kullanımına dair bir örnek görmek için örnek uygulamayı inceleyin.
Başlamadan önce
- Proje düzeyindeki
build.gradle
dosyanızda, Google'ın Maven deposunu hembuildscript
hem deallprojects
bölümüne eklediğinizden emin olun. ML Kit Android kitaplıklarının bağımlılıklarını, modülünüzün uygulama düzeyindeki Gradle dosyasına (genellikle
app/build.gradle
) ekleyin:dependencies { // If you want to use the base sdk implementation 'com.google.mlkit:pose-detection:18.0.0-beta5' // If you want to use the accurate sdk implementation 'com.google.mlkit:pose-detection-accurate:18.0.0-beta5' }
1. PoseDetector
örneği oluşturma
PoseDetector
seçenek
Bir resimde poz algılamak için önce PoseDetector
örneği oluşturun ve isteğe bağlı olarak algılayıcı ayarlarını belirtin.
Algılama modu
PoseDetector
iki algılama modunda çalışır. Kullanım alanınıza uygun olanı seçtiğinizden emin olun.
STREAM_MODE
(varsayılan)- Poz algılayıcı, önce resimdeki en belirgin kişiyi algılar, ardından poz algılama işlemini çalıştırır. Sonraki karelerde, kişi bulanıklaşmadığı veya yüksek güvenle algılanmadığı sürece kişi algılama adımı uygulanmaz. Poz algılayıcı, en belirgin kişiyi takip etmeye çalışır ve her çıkarımda bu kişinin pozunu döndürür. Bu, gecikmeyi azaltır ve algılamayı kolaylaştırır. Bir video akışında pozu algılamak istediğinizde bu modu kullanın.
SINGLE_IMAGE_MODE
- Poz algılayıcı, bir kişiyi algılayıp poz algılama işlemini çalıştırır. Kişi algılama adımı her resim için çalışır. Bu nedenle gecikme daha yüksek olur ve kişi takibi yapılmaz. Poz algılamayı statik resimlerde kullanırken veya izleme istenmediğinde bu modu kullanın.
Donanım yapılandırması
PoseDetector
, performansı optimize etmek için birden fazla donanım yapılandırmasını destekler:
CPU
: Algılayıcıyı yalnızca CPU kullanarak çalıştırın.CPU_GPU
: Hem CPU hem de GPU kullanarak algılayıcıyı çalıştırın.
Algılayıcı seçeneklerini oluştururken donanım seçimini kontrol etmek için API'yi
setPreferredHardwareConfigs
kullanabilirsiniz. Varsayılan olarak tüm donanım yapılandırmaları tercih edilen olarak ayarlanır.
ML Kit, her yapılandırmanın kullanılabilirliğini, kararlılığını, doğruluğunu ve gecikmesini dikkate alarak tercih edilen yapılandırmalar arasından en iyisini seçer. Tercih edilen yapılandırmalardan hiçbiri geçerli değilse yedek olarak CPU
yapılandırması otomatik olarak kullanılır. ML Kit, bu kontrolleri ve ilgili hazırlıkları herhangi bir hızlandırmayı etkinleştirmeden önce engellemeyen bir şekilde yapar. Bu nedenle, kullanıcınızın algılayıcıyı ilk kez çalıştırdığında CPU
kullanması en olası durumdur. Tüm hazırlıklar tamamlandıktan sonra, sonraki çalıştırmalarda en iyi yapılandırma kullanılır.
setPreferredHardwareConfigs
ile ilgili örnek kullanımlar:
- ML Kit'in en iyi yapılandırmayı seçmesine izin vermek için bu API'yi çağırmayın.
- Herhangi bir hızlandırmayı etkinleştirmek istemiyorsanız yalnızca
CPU
değerini iletin. - GPU daha yavaş olsa bile CPU'yu boşaltmak için GPU'yu kullanmak istiyorsanız yalnızca
CPU_GPU
değerini iletin.
Poz algılayıcı seçeneklerini belirtin:
Kotlin
// Base pose detector with streaming frames, when depending on the pose-detection sdk val options = PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build() // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk val options = AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build()
Java
// Base pose detector with streaming frames, when depending on the pose-detection sdk PoseDetectorOptions options = new PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build(); // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk AccuratePoseDetectorOptions options = new AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build();
Son olarak, PoseDetector
örneğini oluşturun. Belirttiğiniz seçenekleri iletin:
Kotlin
val poseDetector = PoseDetection.getClient(options)
Java
PoseDetector poseDetector = PoseDetection.getClient(options);
2. Giriş resmini hazırlama
Bir resimdeki pozları algılamak için InputImage
nesnesi oluşturun. Bu nesne, Bitmap
, media.Image
, ByteBuffer
, bayt dizisi veya cihazdaki bir dosyadan oluşturulabilir. Ardından, InputImage
nesnesini PoseDetector
öğesine iletin.
Poz algılama için en az 480x360 piksel boyutlarında bir resim kullanmanız gerekir. Pozları gerçek zamanlı olarak algılıyorsanız kareleri bu minimum çözünürlükte yakalamak gecikmeyi azaltmaya yardımcı olabilir.
Farklı kaynaklardan InputImage
nesnesi oluşturabilirsiniz. Her biri aşağıda açıklanmıştır.
media.Image
kullanma
Bir media.Image
nesnesinden InputImage
nesnesi oluşturmak için (ör. bir cihazın kamerasından resim yakaladığınızda) media.Image
nesnesini ve resmin dönüşünü InputImage.fromMediaImage()
'e iletin.
CameraX kitaplığını kullanıyorsanız OnImageCapturedListener
ve
ImageAnalysis.Analyzer
sınıfları, sizin için döndürme değerini hesaplar.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Resmin dönüş derecesini veren bir kamera kitaplığı kullanmıyorsanız, cihazın dönüş derecesi ve cihazdaki kamera sensörünün yönlendirmesinden yararlanarak dönüş derecesini hesaplayabilirsiniz:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Ardından, media.Image
nesnesini ve dönüş derecesi değerini InputImage.fromMediaImage()
'ye iletin:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Dosya URI'si kullanma
Dosya URI'sinden InputImage
nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini InputImage.fromFilePath()
'ye iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için ACTION_GET_CONTENT
amacını kullandığınızda yararlıdır.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
veya ByteArray
kullanma
ByteBuffer
veya ByteArray
öğesinden InputImage
nesnesi oluşturmak için öncelikle media.Image
girişi için daha önce açıklandığı gibi görüntü döndürme derecesini hesaplayın.
Ardından, arabellek veya diziyle birlikte resmin yüksekliği, genişliği, renk kodlama biçimi ve döndürme derecesiyle InputImage
nesnesini oluşturun:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
kullanma
Bitmap
nesnesinden InputImage
nesnesi oluşturmak için aşağıdaki bildirimi yapın:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Resim, döndürme dereceleriyle birlikte bir Bitmap
nesnesiyle gösterilir.
3. Resmi işleme
Hazırlanan InputImage
nesnesini PoseDetector
öğesinin process
yöntemine iletin.
Kotlin
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener( new OnSuccessListener<Pose>() { @Override public void onSuccess(Pose pose) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Algılanan poz hakkında bilgi edinme
Resimde bir kişi algılanırsa poz algılama API'si 33 Pose
içeren bir PoseLandmark
döndürür.
Kişi resmin içinde tamamen görünmüyorsa model, eksik önemli nokta koordinatlarını çerçevenin dışına atar ve bunlara düşük InFrameConfidence değerleri verir.
Karede kişi algılanmadıysa Pose
nesnesi PoseLandmark
içermez.
Kotlin
// Get all PoseLandmarks. If no person was detected, the list will be empty val allPoseLandmarks = pose.getAllPoseLandmarks() // Or get specific PoseLandmarks individually. These will all be null if no person // was detected val leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER) val rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER) val leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW) val rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW) val leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST) val rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST) val leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP) val rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP) val leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE) val rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE) val leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE) val rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE) val leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY) val rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY) val leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX) val rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX) val leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB) val rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB) val leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL) val rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL) val leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX) val rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX) val nose = pose.getPoseLandmark(PoseLandmark.NOSE) val leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER) val leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE) val leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER) val rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER) val rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE) val rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER) val leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR) val rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR) val leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH) val rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH)
Java
// Get all PoseLandmarks. If no person was detected, the list will be empty List<PoseLandmark> allPoseLandmarks = pose.getAllPoseLandmarks(); // Or get specific PoseLandmarks individually. These will all be null if no person // was detected PoseLandmark leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER); PoseLandmark rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER); PoseLandmark leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW); PoseLandmark rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW); PoseLandmark leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST); PoseLandmark rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST); PoseLandmark leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP); PoseLandmark rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP); PoseLandmark leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE); PoseLandmark rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE); PoseLandmark leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE); PoseLandmark rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE); PoseLandmark leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY); PoseLandmark rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY); PoseLandmark leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX); PoseLandmark rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX); PoseLandmark leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB); PoseLandmark rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB); PoseLandmark leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL); PoseLandmark rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL); PoseLandmark leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX); PoseLandmark rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX); PoseLandmark nose = pose.getPoseLandmark(PoseLandmark.NOSE); PoseLandmark leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER); PoseLandmark leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE); PoseLandmark leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER); PoseLandmark rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER); PoseLandmark rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE); PoseLandmark rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER); PoseLandmark leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR); PoseLandmark rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR); PoseLandmark leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH); PoseLandmark rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH);
Performansı artırmaya yönelik ipuçları
Sonuçlarınızın kalitesi, giriş resminin kalitesine bağlıdır:
- ML Kit'in pozu doğru şekilde algılayabilmesi için resimdeki kişinin yeterli piksel verisiyle temsil edilmesi gerekir. En iyi performans için özne en az 256x256 piksel olmalıdır.
- Gerçek zamanlı bir uygulamada poz algılarsanız giriş resimlerinin genel boyutlarını da göz önünde bulundurmanız gerekebilir. Daha küçük resimler daha hızlı işlenebilir. Bu nedenle, gecikmeyi azaltmak için daha düşük çözünürlüklerde resim çekin ancak yukarıdaki çözünürlük şartlarını göz önünde bulundurun ve öznenin mümkün olduğunca fazla yer kapladığından emin olun.
- Resmin iyi odaklanmaması da doğruluğu etkileyebilir. Kabul edilebilir sonuçlar almazsanız kullanıcıdan resmi yeniden çekmesini isteyin.
Poz algılamayı gerçek zamanlı bir uygulamada kullanmak istiyorsanız en iyi kare hızlarını elde etmek için aşağıdaki yönergeleri uygulayın:
- Temel poz algılama SDK'sını ve
STREAM_MODE
kullanın. - Görüntüleri daha düşük çözünürlükte çekmeyi deneyin. Ancak bu API'nin resim boyutu koşullarını da göz önünde bulundurun.
Camera
veyacamera2
API'sini kullanıyorsanız dedektöre yapılan çağrıları sınırlayın. Dedektör çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın. Örnek için hızlı başlangıç örnek uygulamasındakiVisionProcessorBase
sınıfına bakın.CameraX
API'sini kullanıyorsanız geri basınç stratejisinin varsayılan değerine ayarlandığından emin olunImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Bu, analiz için aynı anda yalnızca bir resmin gönderilmesini sağlar. Analizör meşgulken daha fazla resim üretilirse bunlar otomatik olarak bırakılır ve teslimat için sıraya alınmaz. Analiz edilen görüntü ImageProxy.close() çağrılarak kapatıldığında, en son görüntü teslim edilir.- Giriş resmine grafik yerleştirmek için algılayıcının çıkışını kullanıyorsanız önce ML Kit'ten sonucu alın, ardından resmi tek adımda oluşturun ve yerleştirin. Bu, her giriş karesi için yalnızca bir kez görüntüleme yüzeyinde oluşturulur. Örnek için hızlı başlangıç örnek uygulamasındaki
CameraSourcePreview
veGraphicOverlay
sınıflarına bakın. - Camera2 API'yi kullanıyorsanız
ImageFormat.YUV_420_888
biçiminde resim çekin. Eski Camera API'yi kullanıyorsanız görüntüleriImageFormat.NV21
biçiminde çekin.
Sonraki adımlar
- Pozları sınıflandırmak için poz işaretlerini nasıl kullanacağınızı öğrenmek istiyorsanız Poz Sınıflandırma İpuçları başlıklı makaleyi inceleyin.