题目链接:42. 接雨水
题目描述:
题意:题目比较简短,但是图却是很清晰,从图中我们可以看出,当前位置能接的雨水肯定与左右两边中的最高块有关,并且是和它们中的最小值相关,否则就直接溢出了,装不下。
思路一:动态规划思路
现在我们很明确了,我们要做的就是寻找当前位置的左右两边的最大值,再取它们中的最小值来减去当前位置的高度就能得到当前位置能接的雨水量。这时候,就能很容易想到用两个数组分别记录每个位置的这两个值即可,并且状态转移也是非常的简单,见下面代码。
代码:
class Solution {
public int trap(int[] height) {
int n=height.length;
if(n<=1) return 0;
int leftMax[]=new int[n]; //记录当前位置左边的最大值
int rightMax[]=new int[n]; //记录当前位置右边的最大值
leftMax[0]=height[0];
for(int i=1;i<n;i++) leftMax[i]=Math.max(leftMax[i-1],height[i]);//为啥要和当前位置比较呢,因为当前位置可能是最高的
rightMax[n-1]=height[n-1];
for(int i=n-2;i>=0;i--) rightMax[i]=Math.max(rightMax[i+1],height[i]);
int ans=0;
//最后位置i能接的雨水为左边最大值和右边最大值的最小值来减去当前位置的高度height[i]
for(int i=0;i<n;i++) ans+=Math.min(leftMax[i],rightMax[i])-height[i];
return ans;
}
}
思路二、双指针
在上面思路中,我们使用两个数组去记录当前位置左右两边最大值的状态,显然这样的空间花费为O(n),并且我们很容易看出,无论是leftMax还是rightMax数组都只和前面一个的状态有关,并且上面是先记录完了最后再来计算答案的。这时候,我们就能利用双指针和两个变量替换该操作,看了官方的解释更容易明白,就拿过来了。
代码:
class Solution {
public int trap(int[] height) {
int n=height.length;
if(n<=1) return 0;
int left=0,right=n-1; //双指针起始指向
int leftMax=0,rightMax=0;
int ans=0;
while(left<right){
leftMax=Math.max(leftMax,height[left]);
rightMax=Math.max(rightMax,height[right]);
if(height[left]<height[right]){ //说明left所在位置的左右两边最大值的最小值在左边
ans+=leftMax-height[left++];
}else{
ans+=rightMax-height[right--];
}
}
return ans;
}
}