数据结构(平衡二叉树)

树与二叉树

1. 基本概念

树是一种非线性结构,其严格的数学定义是:如果一组数据中除了第一个节点(第一个节点称为根 节点,没有直接前驱节点)之外,其余任意节点有且仅有一个直接前驱,有零个或多个直接后继, 这样的一组数据形成一棵树。这种特性简称为一对多的逻辑关系。即用于描述具有层次关系,类似组织架构关系的一种数据结构。

在这里插入图片描述

树的组成: 根,分支,叶子

2. 常见例子

日常生活中,很多数据的组织形式本质上是一棵树。比如一个公司中的职员层级关系,一个学校中 的院系层级关系,淘汰赛中的各次比赛队伍,一个家族中的族谱成员关系等,这些都是树状逻辑结 构。由于树状结构表现出来都是具有层次的,因此也被称为层次结构。

3. 相关术语

通常,在逻辑上表达一棵抽象的树状结构的时候,习惯于将树根放在顶部,树枝树杈向下生长(倒 树),如下图所示。

在这里插入图片描述

对于一棵树来说,有如下基本术语:

  1. 结点:

    树中的元素及其子树

  2. 根( root ):

    树的第一个节点,没有直接前驱。如上图中的A。

  3. 双亲节点 / 父节点( parent ):

    某节点的直接前驱称为该节点的双亲节点,或成为父节点。例如上图中A是B的父节点。

  4. 孩子节点 / 子节点( child ):

    某节点的直接后继称为该节点的孩子节点。例如上图中B、C、D均为A的孩子节点。

  5. 节点的层次( level ):

    根节点所在的层次规定为第1层,其孩子所在的层次为第2层,后代节点以此类推。比如上图中 节点E的层次是3。

  6. 节点的度( degree ):

    一个节点拥有的孩子节点的总数,称为该节点的度。比如上图中节点B的度为2。

  7. 叶子( leaf ):

    一棵树中度等于0的节点,被称为叶子,又称为终端节点。比如上图中K、L、F、G、M、I、J均 为叶子。

  8. 树的高度 / 深度( height ):

    一棵树中所有节点的层次的最大值,称为这棵树的高度,又称为树的深度。比如上图的树的高 度为4。

  9. 有序树与无序树:

    一棵树中,如果某个节点的孩子节点之间是有次序的,则称这棵树为有序树,反之称为无序树。

4. 二叉树

在各种不同的树状结构中,最常见也最重要的是二叉树(Binary Tree),下面是二叉树的定义:

  • 有序树
  • 任意节点的度小于等于2

比如如下这棵树就是一棵二叉树。其中8是根节点,14是10的右孩子(因为二叉树是有序树,因此 严格区分左右),而13则是14的左孩子。

在这里插入图片描述

为了方便对二叉树进行操作,通常会对一棵树进行标号:从上到下,从左到右进行标号:

在这里插入图片描述

注意: 没有孩子节点的地方也要标出来

对于二叉树而言,有如下特性:

  1. 前𝑖层上,最多有个节点。
  2. 高度为𝑘的二叉树,最多有 个节点。
  3. 假设叶子数目为𝑛0,度为2的节点数目为𝑛2,则有:n0=n2+1

二叉树的一般结构:

  • 满二叉树

    一棵深度为k,且有 个结点的二叉树,称为满二叉树。这种树的特点是每一层上的结点数 都是最大结点数。 简单理解: 除了叶子节点之外,其余节点的度都为2;其特点是: 如果深度/高度为 K,则节点 数为 。

    在这里插入图片描述

  • 完全二叉树

    在一棵二叉树中,除最后一层外,若其余层都是满的,或者最后一层是满的,或者是最后一层 在右边缺少连续若干结点,则此二叉树为完全二叉树。 简单理解:除最后一层叶子节点外。是一颗满二叉树,最后一层由右向左有连续缺省的0个,1个 或多个节点。
    在这里插入图片描述

  • 二叉搜索树 (BST-Binaryn Search Tree)

    特点:

    1. 如果节点具有左子树,则左子树上所有节点都不大于(<=)该节点的值; 子树,则右子树上所有节点都不小于(>=)该节点的值;

      子树又是二叉搜索数

在这里插入图片描述

在这里插入图片描述

二叉搜索树( BST )

二叉树( BST )的组成

  • 根指针:指向根节点的指针变量

  • 节点:

    • 数据域 (存储的实际数据)
    • 指针域 (左,右指针)

    结构设计:

 typedef int  data_t;
 typedef struct _node
 {
   
   
 data_t         data;//数据域  
struct _node    *left;//左子树的树叶
struct _node    *right;//右子树的树叶
}NODE;

二叉树( BST )的算法

  • 创建二叉树

    int btree_create(NODE** root,data_t data);
    
  • 二叉树数据添加

    int btree_add(NODE** root,data_t data);
    

    示例图:

    在这里插入图片描述

  • 二叉树数据遍历

二叉搜索树的遍历分为 深度优先遍历(前序遍历、中序遍历、后续遍历)=和广度优先遍历(层序遍历)。

  • 前序遍历(先序遍历,即 1 根左右 ))ABDHIEJCFG

     void Preorder(const NODE* root);
    

    前序遍历通俗的说就是从二叉树的根结点出发,先输出根结点数据,然后输出左结点,最后 输出右结点的数据。

    在这里插入图片描述

    从根结点出发,则第一次到达结点A,故输出A;继续向左访问,第一次访问结点B,故输出 B;按照同样规则,输出D,输出H;当到达叶子结点H,返回到D,此时已经是第二次到达 D,故不在输出D,进而向D右子树访问,D右子树不为空,则访问至I,第一次到达I,则输 出I;I为叶子结点,则返回到D,D左右子树已经访问完毕,则返回到B,进而到B右子树, 第一次到达E,故输出E;向E左子树,故输出J;按照同样的访问规则,继续输出C、F、G。 前序遍历输出结果:ABDHIEJCFG

  • 中序遍历(即 左根右 )HDIBJEAFCG

     void Midorder(const NODE* root);
    

中序遍历通俗的说就是从二叉树的根结点出发,先输出左结点数据,然后输出根结点,最后 输出右结点的数据。
在这里插入图片描述

从根结点出发,则第一次到达结点A,不输出A,继续向左访问,第一次访问结点B,不输出 B;继续到达D,H;

到达H,H左子树为空,则返回到H,此时第二次访问H,故输出H;H右子树为空,则返回 至D,此时第二次到达 D,故输出D;

由D返回至B,第二次到达B,故输出B;按照同样规则继续访问,输出J、E、 A、F、C、G;

中序遍历输出结果:HDIBJEAFCG

  • 后序遍历(即 左右根 )HIDJEBFGCA

    void Postorder(const NODE* root);
    

后序遍历通俗的说就是从二叉树的根结点出发,先输出左结点数据,然后输出右结点,最后 输出根结点的数据。

在这里插入图片描述

从根结点出发,则第一次到达结点A,不输出A,继续向左访问,第一次访问结点B, 不输出B;继续到达D,H;

到达H,H左子树为空,则返回到H,此时第二次访问H,不输出H;H右子树为空,则返回 至H,此时第三次到达 H,故输出H;

由H返回至D,第二次到达D,不输出D;继续访问至I,I左右子树均为空,故 第三次访问I时,输出 I;

返回至D,此时第三次到达D,故输出D;按照同样规则继续访问,输出J、E、B、F、 G、C,A;

后序遍历输出为: HIDJEBFGCA

  • 层序遍历
 void Levelorder(const NODE* root);
  • 二叉树数据查询

    NODE* btree_find(const NODE* root,data_t data);
    

    ① 从根结点出发

    ② 如果比根节点小,那么就去其左子树找

    ③ 如果比根节点大就去其右子树找

    ④ 找到叶子都没找到, 就代表查找失败

    在这里插入图片描述

  • 二叉树数据更新

     int btree_update(const NODE* root,data_t old,data_t newdata);
    
  • 二叉树回收

     void btree_destroy(NODE** root);
    
  • 二叉树数据删除

     int btree_delete(NODE** root,data_t data);
    

    原则:将待删除的节点尽量转换为删除叶子节点,因为删除叶子节点对BST树影响是最小的; 分析:

    关于二叉树(BST)的删除,有以下3种情况:

    ① 删除的节点本身就是叶子节点

    ② 删除的节点拥有左侧子节点(可含右侧子节点)

    ③ 删除的节点仅拥有右侧子节点

    思路:

    ① 从根节点开始遍历BST找到待删除的节点;

    ② 对待删除的节点状态进行判断,如果节点有左子树,找到左子树中最大的节点, 然后利用左子树中最大的点数据替换待删除的节点数据,删除左子树中最大的节点;左子树中最大的节点大概 率是叶子节点。

    ③ 如果节点只有右子树,找到右子树中最小的节点,然后 利用右子树中最小的节点数据 替换待删除的节点数据,删除右子树中最小的节点;右子树中最小的节点大概率是叶子节点。 ④ 如果待删除节点是叶子节点,直接删除。

    在这里插入图片描述

二叉树( BST )完整实现

队列实现

  • SQueue.h
 #ifndef __SQUEUE_H
 #define __SQUEUE_H
 #include "btree.h"
 typedef   NODE*   type_t;
 typedef  struct
 {
   
   
   type_t      *pData;
   int         size;
   int         head;
   int         tail;
 }SQueue;
 int SQ_init(SQueue *q, int num);
 int SQ_isfull(SQueue *q);
 int SQ_isempty(SQueue *q);
 int SQ_push(SQueue *q,type_t data);
 int SQ_pop(SQueue *q,type_t *data);
 int SQ_free(SQueue *q);
 #endif
  • SQueue.c

     #include <stdlib.h>
     #include "SQueue.h"
     int SQ_init(SQueue* q,int num)
     {
         
         
        q -> pData = (type_t*)calloc(sizeof(type_t),num);
        if(q -> pData == NULL)
           return -1;
        q -> size  = num ;
        q -> head  = q -> tail = 0</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值