core/convert/
mod.rs

1//! Traits for conversions between types.
2//!
3//! The traits in this module provide a way to convert from one type to another type.
4//! Each trait serves a different purpose:
5//!
6//! - Implement the [`AsRef`] trait for cheap reference-to-reference conversions
7//! - Implement the [`AsMut`] trait for cheap mutable-to-mutable conversions
8//! - Implement the [`From`] trait for consuming value-to-value conversions
9//! - Implement the [`Into`] trait for consuming value-to-value conversions to types
10//!   outside the current crate
11//! - The [`TryFrom`] and [`TryInto`] traits behave like [`From`] and [`Into`],
12//!   but should be implemented when the conversion can fail.
13//!
14//! The traits in this module are often used as trait bounds for generic functions such that to
15//! arguments of multiple types are supported. See the documentation of each trait for examples.
16//!
17//! As a library author, you should always prefer implementing [`From<T>`][`From`] or
18//! [`TryFrom<T>`][`TryFrom`] rather than [`Into<U>`][`Into`] or [`TryInto<U>`][`TryInto`],
19//! as [`From`] and [`TryFrom`] provide greater flexibility and offer
20//! equivalent [`Into`] or [`TryInto`] implementations for free, thanks to a
21//! blanket implementation in the standard library. When targeting a version prior to Rust 1.41, it
22//! may be necessary to implement [`Into`] or [`TryInto`] directly when converting to a type
23//! outside the current crate.
24//!
25//! # Generic Implementations
26//!
27//! - [`AsRef`] and [`AsMut`] auto-dereference if the inner type is a reference
28//!   (but not generally for all [dereferenceable types][core::ops::Deref])
29//! - [`From`]`<U> for T` implies [`Into`]`<T> for U`
30//! - [`TryFrom`]`<U> for T` implies [`TryInto`]`<T> for U`
31//! - [`From`] and [`Into`] are reflexive, which means that all types can
32//!   `into` themselves and `from` themselves
33//!
34//! See each trait for usage examples.
35
36#![stable(feature = "rust1", since = "1.0.0")]
37
38use crate::error::Error;
39use crate::fmt;
40use crate::hash::{Hash, Hasher};
41use crate::marker::PointeeSized;
42
43mod num;
44
45#[unstable(feature = "convert_float_to_int", issue = "67057")]
46pub use num::FloatToInt;
47
48/// The identity function.
49///
50/// Two things are important to note about this function:
51///
52/// - It is not always equivalent to a closure like `|x| x`, since the
53///   closure may coerce `x` into a different type.
54///
55/// - It moves the input `x` passed to the function.
56///
57/// While it might seem strange to have a function that just returns back the
58/// input, there are some interesting uses.
59///
60/// # Examples
61///
62/// Using `identity` to do nothing in a sequence of other, interesting,
63/// functions:
64///
65/// ```rust
66/// use std::convert::identity;
67///
68/// fn manipulation(x: u32) -> u32 {
69///     // Let's pretend that adding one is an interesting function.
70///     x + 1
71/// }
72///
73/// let _arr = &[identity, manipulation];
74/// ```
75///
76/// Using `identity` as a "do nothing" base case in a conditional:
77///
78/// ```rust
79/// use std::convert::identity;
80///
81/// # let condition = true;
82/// #
83/// # fn manipulation(x: u32) -> u32 { x + 1 }
84/// #
85/// let do_stuff = if condition { manipulation } else { identity };
86///
87/// // Do more interesting stuff...
88///
89/// let _results = do_stuff(42);
90/// ```
91///
92/// Using `identity` to keep the `Some` variants of an iterator of `Option<T>`:
93///
94/// ```rust
95/// use std::convert::identity;
96///
97/// let iter = [Some(1), None, Some(3)].into_iter();
98/// let filtered = iter.filter_map(identity).collect::<Vec<_>>();
99/// assert_eq!(vec![1, 3], filtered);
100/// ```
101#[stable(feature = "convert_id", since = "1.33.0")]
102#[rustc_const_stable(feature = "const_identity", since = "1.33.0")]
103#[inline(always)]
104#[rustc_diagnostic_item = "convert_identity"]
105pub const fn identity<T>(x: T) -> T {
106    x
107}
108
109/// Used to do a cheap reference-to-reference conversion.
110///
111/// This trait is similar to [`AsMut`] which is used for converting between mutable references.
112/// If you need to do a costly conversion it is better to implement [`From`] with type
113/// `&T` or write a custom function.
114///
115/// # Relation to `Borrow`
116///
117/// `AsRef` has the same signature as [`Borrow`], but [`Borrow`] is different in a few aspects:
118///
119/// - Unlike `AsRef`, [`Borrow`] has a blanket impl for any `T`, and can be used to accept either
120///   a reference or a value. (See also note on `AsRef`'s reflexibility below.)
121/// - [`Borrow`] also requires that [`Hash`], [`Eq`] and [`Ord`] for a borrowed value are
122///   equivalent to those of the owned value. For this reason, if you want to
123///   borrow only a single field of a struct you can implement `AsRef`, but not [`Borrow`].
124///
125/// **Note: This trait must not fail**. If the conversion can fail, use a
126/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
127///
128/// # Generic Implementations
129///
130/// `AsRef` auto-dereferences if the inner type is a reference or a mutable reference
131/// (e.g.: `foo.as_ref()` will work the same if `foo` has type `&mut Foo` or `&&mut Foo`).
132///
133/// Note that due to historic reasons, the above currently does not hold generally for all
134/// [dereferenceable types], e.g. `foo.as_ref()` will *not* work the same as
135/// `Box::new(foo).as_ref()`. Instead, many smart pointers provide an `as_ref` implementation which
136/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
137/// reference-to-reference conversion for that value). However, [`AsRef::as_ref`] should not be
138/// used for the sole purpose of dereferencing; instead ['`Deref` coercion'] can be used:
139///
140/// [dereferenceable types]: core::ops::Deref
141/// [pointed-to value]: core::ops::Deref::Target
142/// ['`Deref` coercion']: core::ops::Deref#deref-coercion
143///
144/// ```
145/// let x = Box::new(5i32);
146/// // Avoid this:
147/// // let y: &i32 = x.as_ref();
148/// // Better just write:
149/// let y: &i32 = &x;
150/// ```
151///
152/// Types which implement [`Deref`] should consider implementing `AsRef<T>` as follows:
153///
154/// [`Deref`]: core::ops::Deref
155///
156/// ```
157/// # use core::ops::Deref;
158/// # struct SomeType;
159/// # impl Deref for SomeType {
160/// #     type Target = [u8];
161/// #     fn deref(&self) -> &[u8] {
162/// #         &[]
163/// #     }
164/// # }
165/// impl<T> AsRef<T> for SomeType
166/// where
167///     T: ?Sized,
168///     <SomeType as Deref>::Target: AsRef<T>,
169/// {
170///     fn as_ref(&self) -> &T {
171///         self.deref().as_ref()
172///     }
173/// }
174/// ```
175///
176/// # Reflexivity
177///
178/// Ideally, `AsRef` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsRef<T> for T`
179/// with [`as_ref`] simply returning its argument unchanged.
180/// Such a blanket implementation is currently *not* provided due to technical restrictions of
181/// Rust's type system (it would be overlapping with another existing blanket implementation for
182/// `&T where T: AsRef<U>` which allows `AsRef` to auto-dereference, see "Generic Implementations"
183/// above).
184///
185/// [`as_ref`]: AsRef::as_ref
186///
187/// A trivial implementation of `AsRef<T> for T` must be added explicitly for a particular type `T`
188/// where needed or desired. Note, however, that not all types from `std` contain such an
189/// implementation, and those cannot be added by external code due to orphan rules.
190///
191/// # Examples
192///
193/// By using trait bounds we can accept arguments of different types as long as they can be
194/// converted to the specified type `T`.
195///
196/// For example: By creating a generic function that takes an `AsRef<str>` we express that we
197/// want to accept all references that can be converted to [`&str`] as an argument.
198/// Since both [`String`] and [`&str`] implement `AsRef<str>` we can accept both as input argument.
199///
200/// [`&str`]: primitive@str
201/// [`Borrow`]: crate::borrow::Borrow
202/// [`Eq`]: crate::cmp::Eq
203/// [`Ord`]: crate::cmp::Ord
204/// [`String`]: ../../std/string/struct.String.html
205///
206/// ```
207/// fn is_hello<T: AsRef<str>>(s: T) {
208///    assert_eq!("hello", s.as_ref());
209/// }
210///
211/// let s = "hello";
212/// is_hello(s);
213///
214/// let s = "hello".to_string();
215/// is_hello(s);
216/// ```
217#[stable(feature = "rust1", since = "1.0.0")]
218#[rustc_diagnostic_item = "AsRef"]
219pub trait AsRef<T: PointeeSized>: PointeeSized {
220    /// Converts this type into a shared reference of the (usually inferred) input type.
221    #[stable(feature = "rust1", since = "1.0.0")]
222    fn as_ref(&self) -> &T;
223}
224
225/// Used to do a cheap mutable-to-mutable reference conversion.
226///
227/// This trait is similar to [`AsRef`] but used for converting between mutable
228/// references. If you need to do a costly conversion it is better to
229/// implement [`From`] with type `&mut T` or write a custom function.
230///
231/// **Note: This trait must not fail**. If the conversion can fail, use a
232/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
233///
234/// # Generic Implementations
235///
236/// `AsMut` auto-dereferences if the inner type is a mutable reference
237/// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo` or `&mut &mut Foo`).
238///
239/// Note that due to historic reasons, the above currently does not hold generally for all
240/// [mutably dereferenceable types], e.g. `foo.as_mut()` will *not* work the same as
241/// `Box::new(foo).as_mut()`. Instead, many smart pointers provide an `as_mut` implementation which
242/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
243/// reference-to-reference conversion for that value). However, [`AsMut::as_mut`] should not be
244/// used for the sole purpose of mutable dereferencing; instead ['`Deref` coercion'] can be used:
245///
246/// [mutably dereferenceable types]: core::ops::DerefMut
247/// [pointed-to value]: core::ops::Deref::Target
248/// ['`Deref` coercion']: core::ops::DerefMut#mutable-deref-coercion
249///
250/// ```
251/// let mut x = Box::new(5i32);
252/// // Avoid this:
253/// // let y: &mut i32 = x.as_mut();
254/// // Better just write:
255/// let y: &mut i32 = &mut x;
256/// ```
257///
258/// Types which implement [`DerefMut`] should consider to add an implementation of `AsMut<T>` as
259/// follows:
260///
261/// [`DerefMut`]: core::ops::DerefMut
262///
263/// ```
264/// # use core::ops::{Deref, DerefMut};
265/// # struct SomeType;
266/// # impl Deref for SomeType {
267/// #     type Target = [u8];
268/// #     fn deref(&self) -> &[u8] {
269/// #         &[]
270/// #     }
271/// # }
272/// # impl DerefMut for SomeType {
273/// #     fn deref_mut(&mut self) -> &mut [u8] {
274/// #         &mut []
275/// #     }
276/// # }
277/// impl<T> AsMut<T> for SomeType
278/// where
279///     <SomeType as Deref>::Target: AsMut<T>,
280/// {
281///     fn as_mut(&mut self) -> &mut T {
282///         self.deref_mut().as_mut()
283///     }
284/// }
285/// ```
286///
287/// # Reflexivity
288///
289/// Ideally, `AsMut` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsMut<T> for T`
290/// with [`as_mut`] simply returning its argument unchanged.
291/// Such a blanket implementation is currently *not* provided due to technical restrictions of
292/// Rust's type system (it would be overlapping with another existing blanket implementation for
293/// `&mut T where T: AsMut<U>` which allows `AsMut` to auto-dereference, see "Generic
294/// Implementations" above).
295///
296/// [`as_mut`]: AsMut::as_mut
297///
298/// A trivial implementation of `AsMut<T> for T` must be added explicitly for a particular type `T`
299/// where needed or desired. Note, however, that not all types from `std` contain such an
300/// implementation, and those cannot be added by external code due to orphan rules.
301///
302/// # Examples
303///
304/// Using `AsMut` as trait bound for a generic function, we can accept all mutable references that
305/// can be converted to type `&mut T`. Unlike [dereference], which has a single [target type],
306/// there can be multiple implementations of `AsMut` for a type. In particular, `Vec<T>` implements
307/// both `AsMut<Vec<T>>` and `AsMut<[T]>`.
308///
309/// In the following, the example functions `caesar` and `null_terminate` provide a generic
310/// interface which work with any type that can be converted by cheap mutable-to-mutable conversion
311/// into a byte slice (`[u8]`) or byte vector (`Vec<u8>`), respectively.
312///
313/// [dereference]: core::ops::DerefMut
314/// [target type]: core::ops::Deref::Target
315///
316/// ```
317/// struct Document {
318///     info: String,
319///     content: Vec<u8>,
320/// }
321///
322/// impl<T: ?Sized> AsMut<T> for Document
323/// where
324///     Vec<u8>: AsMut<T>,
325/// {
326///     fn as_mut(&mut self) -> &mut T {
327///         self.content.as_mut()
328///     }
329/// }
330///
331/// fn caesar<T: AsMut<[u8]>>(data: &mut T, key: u8) {
332///     for byte in data.as_mut() {
333///         *byte = byte.wrapping_add(key);
334///     }
335/// }
336///
337/// fn null_terminate<T: AsMut<Vec<u8>>>(data: &mut T) {
338///     // Using a non-generic inner function, which contains most of the
339///     // functionality, helps to minimize monomorphization overhead.
340///     fn doit(data: &mut Vec<u8>) {
341///         let len = data.len();
342///         if len == 0 || data[len-1] != 0 {
343///             data.push(0);
344///         }
345///     }
346///     doit(data.as_mut());
347/// }
348///
349/// fn main() {
350///     let mut v: Vec<u8> = vec![1, 2, 3];
351///     caesar(&mut v, 5);
352///     assert_eq!(v, [6, 7, 8]);
353///     null_terminate(&mut v);
354///     assert_eq!(v, [6, 7, 8, 0]);
355///     let mut doc = Document {
356///         info: String::from("Example"),
357///         content: vec![17, 19, 8],
358///     };
359///     caesar(&mut doc, 1);
360///     assert_eq!(doc.content, [18, 20, 9]);
361///     null_terminate(&mut doc);
362///     assert_eq!(doc.content, [18, 20, 9, 0]);
363/// }
364/// ```
365///
366/// Note, however, that APIs don't need to be generic. In many cases taking a `&mut [u8]` or
367/// `&mut Vec<u8>`, for example, is the better choice (callers need to pass the correct type then).
368#[stable(feature = "rust1", since = "1.0.0")]
369#[rustc_diagnostic_item = "AsMut"]
370pub trait AsMut<T: PointeeSized>: PointeeSized {
371    /// Converts this type into a mutable reference of the (usually inferred) input type.
372    #[stable(feature = "rust1", since = "1.0.0")]
373    fn as_mut(&mut self) -> &mut T;
374}
375
376/// A value-to-value conversion that consumes the input value. The
377/// opposite of [`From`].
378///
379/// One should avoid implementing [`Into`] and implement [`From`] instead.
380/// Implementing [`From`] automatically provides one with an implementation of [`Into`]
381/// thanks to the blanket implementation in the standard library.
382///
383/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
384/// to ensure that types that only implement [`Into`] can be used as well.
385///
386/// **Note: This trait must not fail**. If the conversion can fail, use [`TryInto`].
387///
388/// # Generic Implementations
389///
390/// - [`From`]`<T> for U` implies `Into<U> for T`
391/// - [`Into`] is reflexive, which means that `Into<T> for T` is implemented
392///
393/// # Implementing [`Into`] for conversions to external types in old versions of Rust
394///
395/// Prior to Rust 1.41, if the destination type was not part of the current crate
396/// then you couldn't implement [`From`] directly.
397/// For example, take this code:
398///
399/// ```
400/// # #![allow(non_local_definitions)]
401/// struct Wrapper<T>(Vec<T>);
402/// impl<T> From<Wrapper<T>> for Vec<T> {
403///     fn from(w: Wrapper<T>) -> Vec<T> {
404///         w.0
405///     }
406/// }
407/// ```
408/// This will fail to compile in older versions of the language because Rust's orphaning rules
409/// used to be a little bit more strict. To bypass this, you could implement [`Into`] directly:
410///
411/// ```
412/// struct Wrapper<T>(Vec<T>);
413/// impl<T> Into<Vec<T>> for Wrapper<T> {
414///     fn into(self) -> Vec<T> {
415///         self.0
416///     }
417/// }
418/// ```
419///
420/// It is important to understand that [`Into`] does not provide a [`From`] implementation
421/// (as [`From`] does with [`Into`]). Therefore, you should always try to implement [`From`]
422/// and then fall back to [`Into`] if [`From`] can't be implemented.
423///
424/// # Examples
425///
426/// [`String`] implements [`Into`]`<`[`Vec`]`<`[`u8`]`>>`:
427///
428/// In order to express that we want a generic function to take all arguments that can be
429/// converted to a specified type `T`, we can use a trait bound of [`Into`]`<T>`.
430/// For example: The function `is_hello` takes all arguments that can be converted into a
431/// [`Vec`]`<`[`u8`]`>`.
432///
433/// ```
434/// fn is_hello<T: Into<Vec<u8>>>(s: T) {
435///    let bytes = b"hello".to_vec();
436///    assert_eq!(bytes, s.into());
437/// }
438///
439/// let s = "hello".to_string();
440/// is_hello(s);
441/// ```
442///
443/// [`String`]: ../../std/string/struct.String.html
444/// [`Vec`]: ../../std/vec/struct.Vec.html
445#[rustc_diagnostic_item = "Into"]
446#[stable(feature = "rust1", since = "1.0.0")]
447#[doc(search_unbox)]
448pub trait Into<T>: Sized {
449    /// Converts this type into the (usually inferred) input type.
450    #[must_use]
451    #[stable(feature = "rust1", since = "1.0.0")]
452    fn into(self) -> T;
453}
454
455/// Used to do value-to-value conversions while consuming the input value. It is the reciprocal of
456/// [`Into`].
457///
458/// One should always prefer implementing `From` over [`Into`]
459/// because implementing `From` automatically provides one with an implementation of [`Into`]
460/// thanks to the blanket implementation in the standard library.
461///
462/// Only implement [`Into`] when targeting a version prior to Rust 1.41 and converting to a type
463/// outside the current crate.
464/// `From` was not able to do these types of conversions in earlier versions because of Rust's
465/// orphaning rules.
466/// See [`Into`] for more details.
467///
468/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
469/// to ensure that types that only implement [`Into`] can be used as well.
470///
471/// The `From` trait is also very useful when performing error handling. When constructing a function
472/// that is capable of failing, the return type will generally be of the form `Result<T, E>`.
473/// `From` simplifies error handling by allowing a function to return a single error type
474/// that encapsulates multiple error types. See the "Examples" section and [the book][book] for more
475/// details.
476///
477/// **Note: This trait must not fail**. The `From` trait is intended for perfect conversions.
478/// If the conversion can fail or is not perfect, use [`TryFrom`].
479///
480/// # Generic Implementations
481///
482/// - `From<T> for U` implies [`Into`]`<U> for T`
483/// - `From` is reflexive, which means that `From<T> for T` is implemented
484///
485/// # When to implement `From`
486///
487/// While there's no technical restrictions on which conversions can be done using
488/// a `From` implementation, the general expectation is that the conversions
489/// should typically be restricted as follows:
490///
491/// * The conversion is *infallible*: if the conversion can fail, use [`TryFrom`]
492///   instead; don't provide a `From` impl that panics.
493///
494/// * The conversion is *lossless*: semantically, it should not lose or discard
495///   information. For example, `i32: From<u16>` exists, where the original
496///   value can be recovered using `u16: TryFrom<i32>`.  And `String: From<&str>`
497///   exists, where you can get something equivalent to the original value via
498///   `Deref`.  But `From` cannot be used to convert from `u32` to `u16`, since
499///   that cannot succeed in a lossless way.  (There's some wiggle room here for
500///   information not considered semantically relevant.  For example,
501///   `Box<[T]>: From<Vec<T>>` exists even though it might not preserve capacity,
502///   like how two vectors can be equal despite differing capacities.)
503///
504/// * The conversion is *value-preserving*: the conceptual kind and meaning of
505///   the resulting value is the same, even though the Rust type and technical
506///   representation might be different.  For example `-1_i8 as u8` is *lossless*,
507///   since `as` casting back can recover the original value, but that conversion
508///   is *not* available via `From` because `-1` and `255` are different conceptual
509///   values (despite being identical bit patterns technically).  But
510///   `f32: From<i16>` *is* available because `1_i16` and `1.0_f32` are conceptually
511///   the same real number (despite having very different bit patterns technically).
512///   `String: From<char>` is available because they're both *text*, but
513///   `String: From<u32>` is *not* available, since `1` (a number) and `"1"`
514///   (text) are too different.  (Converting values to text is instead covered
515///   by the [`Display`](crate::fmt::Display) trait.)
516///
517/// * The conversion is *obvious*: it's the only reasonable conversion between
518///   the two types.  Otherwise it's better to have it be a named method or
519///   constructor, like how [`str::as_bytes`] is a method and how integers have
520///   methods like [`u32::from_ne_bytes`], [`u32::from_le_bytes`], and
521///   [`u32::from_be_bytes`], none of which are `From` implementations.  Whereas
522///   there's only one reasonable way to wrap an [`Ipv6Addr`](crate::net::Ipv6Addr)
523///   into an [`IpAddr`](crate::net::IpAddr), thus `IpAddr: From<Ipv6Addr>` exists.
524///
525/// # Examples
526///
527/// [`String`] implements `From<&str>`:
528///
529/// An explicit conversion from a `&str` to a String is done as follows:
530///
531/// ```
532/// let string = "hello".to_string();
533/// let other_string = String::from("hello");
534///
535/// assert_eq!(string, other_string);
536/// ```
537///
538/// While performing error handling it is often useful to implement `From` for your own error type.
539/// By converting underlying error types to our own custom error type that encapsulates the
540/// underlying error type, we can return a single error type without losing information on the
541/// underlying cause. The '?' operator automatically converts the underlying error type to our
542/// custom error type with `From::from`.
543///
544/// ```
545/// use std::fs;
546/// use std::io;
547/// use std::num;
548///
549/// enum CliError {
550///     IoError(io::Error),
551///     ParseError(num::ParseIntError),
552/// }
553///
554/// impl From<io::Error> for CliError {
555///     fn from(error: io::Error) -> Self {
556///         CliError::IoError(error)
557///     }
558/// }
559///
560/// impl From<num::ParseIntError> for CliError {
561///     fn from(error: num::ParseIntError) -> Self {
562///         CliError::ParseError(error)
563///     }
564/// }
565///
566/// fn open_and_parse_file(file_name: &str) -> Result<i32, CliError> {
567///     let mut contents = fs::read_to_string(&file_name)?;
568///     let num: i32 = contents.trim().parse()?;
569///     Ok(num)
570/// }
571/// ```
572///
573/// [`String`]: ../../std/string/struct.String.html
574/// [`from`]: From::from
575/// [book]: ../../book/ch09-00-error-handling.html
576#[rustc_diagnostic_item = "From"]
577#[stable(feature = "rust1", since = "1.0.0")]
578#[rustc_on_unimplemented(on(
579    all(Self = "&str", T = "alloc::string::String"),
580    note = "to coerce a `{T}` into a `{Self}`, use `&*` as a prefix",
581))]
582#[doc(search_unbox)]
583pub trait From<T>: Sized {
584    /// Converts to this type from the input type.
585    #[rustc_diagnostic_item = "from_fn"]
586    #[must_use]
587    #[stable(feature = "rust1", since = "1.0.0")]
588    fn from(value: T) -> Self;
589}
590
591/// An attempted conversion that consumes `self`, which may or may not be
592/// expensive.
593///
594/// Library authors should usually not directly implement this trait,
595/// but should prefer implementing the [`TryFrom`] trait, which offers
596/// greater flexibility and provides an equivalent `TryInto`
597/// implementation for free, thanks to a blanket implementation in the
598/// standard library. For more information on this, see the
599/// documentation for [`Into`].
600///
601/// Prefer using [`TryInto`] over [`TryFrom`] when specifying trait bounds on a generic function
602/// to ensure that types that only implement [`TryInto`] can be used as well.
603///
604/// # Implementing `TryInto`
605///
606/// This suffers the same restrictions and reasoning as implementing
607/// [`Into`], see there for details.
608#[rustc_diagnostic_item = "TryInto"]
609#[stable(feature = "try_from", since = "1.34.0")]
610pub trait TryInto<T>: Sized {
611    /// The type returned in the event of a conversion error.
612    #[stable(feature = "try_from", since = "1.34.0")]
613    type Error;
614
615    /// Performs the conversion.
616    #[stable(feature = "try_from", since = "1.34.0")]
617    fn try_into(self) -> Result<T, Self::Error>;
618}
619
620/// Simple and safe type conversions that may fail in a controlled
621/// way under some circumstances. It is the reciprocal of [`TryInto`].
622///
623/// This is useful when you are doing a type conversion that may
624/// trivially succeed but may also need special handling.
625/// For example, there is no way to convert an [`i64`] into an [`i32`]
626/// using the [`From`] trait, because an [`i64`] may contain a value
627/// that an [`i32`] cannot represent and so the conversion would lose data.
628/// This might be handled by truncating the [`i64`] to an [`i32`] or by
629/// simply returning [`i32::MAX`], or by some other method.  The [`From`]
630/// trait is intended for perfect conversions, so the `TryFrom` trait
631/// informs the programmer when a type conversion could go bad and lets
632/// them decide how to handle it.
633///
634/// # Generic Implementations
635///
636/// - `TryFrom<T> for U` implies [`TryInto`]`<U> for T`
637/// - [`try_from`] is reflexive, which means that `TryFrom<T> for T`
638/// is implemented and cannot fail -- the associated `Error` type for
639/// calling `T::try_from()` on a value of type `T` is [`Infallible`].
640/// When the [`!`] type is stabilized [`Infallible`] and [`!`] will be
641/// equivalent.
642///
643/// Prefer using [`TryInto`] over [`TryFrom`] when specifying trait bounds on a generic function
644/// to ensure that types that only implement [`TryInto`] can be used as well.
645///
646/// `TryFrom<T>` can be implemented as follows:
647///
648/// ```
649/// struct GreaterThanZero(i32);
650///
651/// impl TryFrom<i32> for GreaterThanZero {
652///     type Error = &'static str;
653///
654///     fn try_from(value: i32) -> Result<Self, Self::Error> {
655///         if value <= 0 {
656///             Err("GreaterThanZero only accepts values greater than zero!")
657///         } else {
658///             Ok(GreaterThanZero(value))
659///         }
660///     }
661/// }
662/// ```
663///
664/// # Examples
665///
666/// As described, [`i32`] implements `TryFrom<`[`i64`]`>`:
667///
668/// ```
669/// let big_number = 1_000_000_000_000i64;
670/// // Silently truncates `big_number`, requires detecting
671/// // and handling the truncation after the fact.
672/// let smaller_number = big_number as i32;
673/// assert_eq!(smaller_number, -727379968);
674///
675/// // Returns an error because `big_number` is too big to
676/// // fit in an `i32`.
677/// let try_smaller_number = i32::try_from(big_number);
678/// assert!(try_smaller_number.is_err());
679///
680/// // Returns `Ok(3)`.
681/// let try_successful_smaller_number = i32::try_from(3);
682/// assert!(try_successful_smaller_number.is_ok());
683/// ```
684///
685/// [`try_from`]: TryFrom::try_from
686#[rustc_diagnostic_item = "TryFrom"]
687#[stable(feature = "try_from", since = "1.34.0")]
688pub trait TryFrom<T>: Sized {
689    /// The type returned in the event of a conversion error.
690    #[stable(feature = "try_from", since = "1.34.0")]
691    type Error;
692
693    /// Performs the conversion.
694    #[stable(feature = "try_from", since = "1.34.0")]
695    #[rustc_diagnostic_item = "try_from_fn"]
696    fn try_from(value: T) -> Result<Self, Self::Error>;
697}
698
699////////////////////////////////////////////////////////////////////////////////
700// GENERIC IMPLS
701////////////////////////////////////////////////////////////////////////////////
702
703// As lifts over &
704#[stable(feature = "rust1", since = "1.0.0")]
705impl<T: PointeeSized, U: PointeeSized> AsRef<U> for &T
706where
707    T: AsRef<U>,
708{
709    #[inline]
710    fn as_ref(&self) -> &U {
711        <T as AsRef<U>>::as_ref(*self)
712    }
713}
714
715// As lifts over &mut
716#[stable(feature = "rust1", since = "1.0.0")]
717impl<T: PointeeSized, U: PointeeSized> AsRef<U> for &mut T
718where
719    T: AsRef<U>,
720{
721    #[inline]
722    fn as_ref(&self) -> &U {
723        <T as AsRef<U>>::as_ref(*self)
724    }
725}
726
727// FIXME (#45742): replace the above impls for &/&mut with the following more general one:
728// // As lifts over Deref
729// impl<D: ?Sized + Deref<Target: AsRef<U>>, U: ?Sized> AsRef<U> for D {
730//     fn as_ref(&self) -> &U {
731//         self.deref().as_ref()
732//     }
733// }
734
735// AsMut lifts over &mut
736#[stable(feature = "rust1", since = "1.0.0")]
737impl<T: PointeeSized, U: PointeeSized> AsMut<U> for &mut T
738where
739    T: AsMut<U>,
740{
741    #[inline]
742    fn as_mut(&mut self) -> &mut U {
743        (*self).as_mut()
744    }
745}
746
747// FIXME (#45742): replace the above impl for &mut with the following more general one:
748// // AsMut lifts over DerefMut
749// impl<D: ?Sized + Deref<Target: AsMut<U>>, U: ?Sized> AsMut<U> for D {
750//     fn as_mut(&mut self) -> &mut U {
751//         self.deref_mut().as_mut()
752//     }
753// }
754
755// From implies Into
756#[stable(feature = "rust1", since = "1.0.0")]
757impl<T, U> Into<U> for T
758where
759    U: From<T>,
760{
761    /// Calls `U::from(self)`.
762    ///
763    /// That is, this conversion is whatever the implementation of
764    /// <code>[From]&lt;T&gt; for U</code> chooses to do.
765    #[inline]
766    #[track_caller]
767    fn into(self) -> U {
768        U::from(self)
769    }
770}
771
772// From (and thus Into) is reflexive
773#[stable(feature = "rust1", since = "1.0.0")]
774impl<T> From<T> for T {
775    /// Returns the argument unchanged.
776    #[inline(always)]
777    fn from(t: T) -> T {
778        t
779    }
780}
781
782/// **Stability note:** This impl does not yet exist, but we are
783/// "reserving space" to add it in the future. See
784/// [rust-lang/rust#64715][#64715] for details.
785///
786/// [#64715]: https://github.com/rust-lang/rust/issues/64715
787#[stable(feature = "convert_infallible", since = "1.34.0")]
788#[rustc_reservation_impl = "permitting this impl would forbid us from adding \
789                            `impl<T> From<!> for T` later; see rust-lang/rust#64715 for details"]
790impl<T> From<!> for T {
791    fn from(t: !) -> T {
792        t
793    }
794}
795
796// TryFrom implies TryInto
797#[stable(feature = "try_from", since = "1.34.0")]
798impl<T, U> TryInto<U> for T
799where
800    U: TryFrom<T>,
801{
802    type Error = U::Error;
803
804    #[inline]
805    fn try_into(self) -> Result<U, U::Error> {
806        U::try_from(self)
807    }
808}
809
810// Infallible conversions are semantically equivalent to fallible conversions
811// with an uninhabited error type.
812#[stable(feature = "try_from", since = "1.34.0")]
813impl<T, U> TryFrom<U> for T
814where
815    U: Into<T>,
816{
817    type Error = Infallible;
818
819    #[inline]
820    fn try_from(value: U) -> Result<Self, Self::Error> {
821        Ok(U::into(value))
822    }
823}
824
825////////////////////////////////////////////////////////////////////////////////
826// CONCRETE IMPLS
827////////////////////////////////////////////////////////////////////////////////
828
829#[stable(feature = "rust1", since = "1.0.0")]
830impl<T> AsRef<[T]> for [T] {
831    #[inline(always)]
832    fn as_ref(&self) -> &[T] {
833        self
834    }
835}
836
837#[stable(feature = "rust1", since = "1.0.0")]
838impl<T> AsMut<[T]> for [T] {
839    #[inline(always)]
840    fn as_mut(&mut self) -> &mut [T] {
841        self
842    }
843}
844
845#[stable(feature = "rust1", since = "1.0.0")]
846impl AsRef<str> for str {
847    #[inline(always)]
848    fn as_ref(&self) -> &str {
849        self
850    }
851}
852
853#[stable(feature = "as_mut_str_for_str", since = "1.51.0")]
854impl AsMut<str> for str {
855    #[inline(always)]
856    fn as_mut(&mut self) -> &mut str {
857        self
858    }
859}
860
861////////////////////////////////////////////////////////////////////////////////
862// THE NO-ERROR ERROR TYPE
863////////////////////////////////////////////////////////////////////////////////
864
865/// The error type for errors that can never happen.
866///
867/// Since this enum has no variant, a value of this type can never actually exist.
868/// This can be useful for generic APIs that use [`Result`] and parameterize the error type,
869/// to indicate that the result is always [`Ok`].
870///
871/// For example, the [`TryFrom`] trait (conversion that returns a [`Result`])
872/// has a blanket implementation for all types where a reverse [`Into`] implementation exists.
873///
874/// ```ignore (illustrates std code, duplicating the impl in a doctest would be an error)
875/// impl<T, U> TryFrom<U> for T where U: Into<T> {
876///     type Error = Infallible;
877///
878///     fn try_from(value: U) -> Result<Self, Infallible> {
879///         Ok(U::into(value))  // Never returns `Err`
880///     }
881/// }
882/// ```
883///
884/// # Future compatibility
885///
886/// This enum has the same role as [the `!` “never” type][never],
887/// which is unstable in this version of Rust.
888/// When `!` is stabilized, we plan to make `Infallible` a type alias to it:
889///
890/// ```ignore (illustrates future std change)
891/// pub type Infallible = !;
892/// ```
893///
894/// … and eventually deprecate `Infallible`.
895///
896/// However there is one case where `!` syntax can be used
897/// before `!` is stabilized as a full-fledged type: in the position of a function’s return type.
898/// Specifically, it is possible to have implementations for two different function pointer types:
899///
900/// ```
901/// trait MyTrait {}
902/// impl MyTrait for fn() -> ! {}
903/// impl MyTrait for fn() -> std::convert::Infallible {}
904/// ```
905///
906/// With `Infallible` being an enum, this code is valid.
907/// However when `Infallible` becomes an alias for the never type,
908/// the two `impl`s will start to overlap
909/// and therefore will be disallowed by the language’s trait coherence rules.
910#[stable(feature = "convert_infallible", since = "1.34.0")]
911#[derive(Copy)]
912pub enum Infallible {}
913
914#[stable(feature = "convert_infallible", since = "1.34.0")]
915impl Clone for Infallible {
916    fn clone(&self) -> Infallible {
917        match *self {}
918    }
919}
920
921#[stable(feature = "convert_infallible", since = "1.34.0")]
922impl fmt::Debug for Infallible {
923    fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
924        match *self {}
925    }
926}
927
928#[stable(feature = "convert_infallible", since = "1.34.0")]
929impl fmt::Display for Infallible {
930    fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
931        match *self {}
932    }
933}
934
935#[stable(feature = "str_parse_error2", since = "1.8.0")]
936impl Error for Infallible {
937    fn description(&self) -> &str {
938        match *self {}
939    }
940}
941
942#[stable(feature = "convert_infallible", since = "1.34.0")]
943impl PartialEq for Infallible {
944    fn eq(&self, _: &Infallible) -> bool {
945        match *self {}
946    }
947}
948
949#[stable(feature = "convert_infallible", since = "1.34.0")]
950impl Eq for Infallible {}
951
952#[stable(feature = "convert_infallible", since = "1.34.0")]
953impl PartialOrd for Infallible {
954    fn partial_cmp(&self, _other: &Self) -> Option<crate::cmp::Ordering> {
955        match *self {}
956    }
957}
958
959#[stable(feature = "convert_infallible", since = "1.34.0")]
960impl Ord for Infallible {
961    fn cmp(&self, _other: &Self) -> crate::cmp::Ordering {
962        match *self {}
963    }
964}
965
966#[stable(feature = "convert_infallible", since = "1.34.0")]
967impl From<!> for Infallible {
968    #[inline]
969    fn from(x: !) -> Self {
970        x
971    }
972}
973
974#[stable(feature = "convert_infallible_hash", since = "1.44.0")]
975impl Hash for Infallible {
976    fn hash<H: Hasher>(&self, _: &mut H) {
977        match *self {}
978    }
979}