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Abstract—Deterministic model predictive control (MPC), while
powerful, is often insufficient for effectively controlling au-
tonomous systems in the real-world. Factors such as environmen-
tal noise and model error can cause deviations from the expected
nominal performance. Robust MPC algorithms aim to bridge this
gap between deterministic and uncertain control. However, these
methods are often excessively difficult to tune for robustness
due to the nonlinear and non-intuitive effects that controller
parameters have on performance. To address this challenge,
we first present a unifying perspective on differentiable opti-
mization for control using the implicit function theorem (IFT),
from which existing state-of-the art methods can be derived.
Drawing parallels with differential dynamic programming, the
IFT enables the derivation of an efficient differentiable optimal
control framework. The derived scheme is subsequently paired
with a tube-based MPC architecture to facilitate the automatic
and real-time tuning of robust controllers in the presence of
large uncertainties and disturbances. The proposed algorithm is
benchmarked on multiple nonlinear robotic systems, including
two systems in the MuJoCo simulator environment and one
hardware experiment on the Robotarium testbed, to demonstrate
its efficacy.

I. INTRODUCTION

Model predictive control (MPC) is a predominant approach
for real-time optimization-based motion planning and control
across robotics [39, 50], aerospace [18, 16, 29], and process
systems [41]. One of the main strengths of MPC is that it
reformulates the optimal control problem as optimization over
an open-loop control sequence that is applied successively
online. This allows for an implicit form of feedback since the
controls are reoptimized from the current state of the system
at every time step of the problem [43].

However, when applied to autonomous systems acting in
the real-world, deterministic MPC is often unable to respond
to large disturbances that occur due to environmental factors,
model uncertainty, etc. Additionally, under such large distur-
bances the open-loop optimal control may be infeasible or
result in unsafe solutions, which, e.g., crash into obstacles.
This motivates the development of control algorithms that
explicitly account for unknown disturbances in the dynamics
and guarantee robustness. This field of study is known as
robust control [45, 38], for which two classes of algorithms
exist. The first formulates the problem as a min-max opti-
mization, finding a control policy that minimizes the cost
under worst-case disturbances. These methods are generally
impractical as they require optimization over a class of infinite-
dimensional control policies and are often too conservative in
practice [32, 43].

On the other hand, tube-based approaches have found
large success as they are able to leverage the strengths of

Fig. 1: Proposed differentiable robust MPC architecture. Or-
ange dashed arrows show how gradients are passed in our
architecture.

Fig. 2: Controlled quadrotor trajectories subject to large distur-
bances. 50 trajectories are plotted for each algorithm. ‘Nom-
inal’ corresponds to the reference trajectory being tracked by
the two algorithms. Our proposed differentiable tube-based
MPC (DT-MPC) is safer and more robust than the baseline
nonlinear tube-based MPC (NT-MPC).

MPC [27, 34, 13, 51, 30]. These approaches are robust to
uncertainty in the dynamics by dividing the online control
problem into two optimization layers: a nominal MPC layer
and an ancillary MPC layer. The nominal MPC generates a
nominal reference trajectory x̄ in the absence of noise or
disturbances. The role of the ancillary MPC is to track the
reference trajectory subject to uncertainty in the state of the
system. Under certain regularity assumptions, the true state x
is guaranteed to lie within some bounded distance from the
nominal state x̄ — plotting multiple realizations of the state
will look like a “tube” centered around the nominal trajectory,
from which these approaches derive their name [33, 43]. The
use of the ancillary controller makes tube-based approaches



more flexible than standard open-loop control through the
additional degree of freedom available [34], while the use
of MPC keeps these approaches computationally efficient,
particularly for real-time applications, e.g., vehicle trajectory
planning. While numerous approaches exist that allow the
nominal controller of the tube-based MPC to respond to the
environment, they are often heuristic in nature or require
running an additional optimization, e.g., to select the best
candidate starting state for the nominal MPC at every time
step [34].

The main contribution of this work is the development of
a novel differentiable tube-based MPC (DT-MPC) framework
for safe, robust control. Safety is enforced through the use
of discrete barrier states [3], which enables scalable constraint
satisfaction such that safe planning and control can be executed
in real-time. A general differentiable optimal control algorithm
is derived that describes how to efficiently pass derivatives
through both layers of the MPC architecture (nominal and
ancillary controllers). Fig. 1 summarizes the proposed dif-
ferentiable robust MPC architecture and Fig. 2 demonstrates
the proposed DT-MPC algorithm solving a complex quadrotor
navigation task in the presence of numerous obstacles. Tra-
jectories controlled under DT-MPC remain safe under large
uncertainty and arrive at the goal with higher probability than
the baseline.

Our proposed approach performs gradient updates on the
controller parameters in a principled manner and has com-
putational complexity equivalent to that of a single finite-
horizon LQR solve. The computation scales linearly with the
look-ahead horizon of the MPC, and, therefore, our proposed
algorithm is comparable in complexity to conventional MPC.
The efficacy of the proposed approach is benchmarked through
multiple Monte Carlo simulations on five nonlinear robotics
systems, including two systems in the MuJoCo simulator
environment [48]. A hardware experiment on the Robotarium
[52] demonstrates the ability of the proposed DT-MPC to adapt
to an out-of-distribution test case. Moreover, timing and gra-
dient error comparisons against state-of-the-art differentiable
optimal control methods are provided.

In summary, the main contributions of this work include:
1) the derivation of a general differentiable optimal control

framework enabled through a novel application of the
implicit function theorem,

2) the proposition of a differentiable tube-based MPC al-
gorithm that allows the online adaptation of controller
parameters to maximize success and safety,

3) extensive benchmarks on multiple nonlinear robotics sys-
tems both in simulation and on hardware showing the
applicability and generality of the proposed approach.

In Section II, tube-based MPC is reviewed along with
embedded discrete barrier states, which will be used in the
proposed algorithm to enforce safety. Section III presents a
generalized differentiable optimal control framework, relating
recent advancements in differentiable optimization-based con-
trol. In Section IV, a differentiable robust MPC algorithm
is presented. Experiments are provided on various robotics

systems in Section V. Concluding remarks are given in Sec-
tion VI.

II. MATHEMATICAL BACKGROUND

A. Tube-based Model Predictive Control

Tube-based MPC approaches design a robust controller for
the uncertain, safety-critical system

xt+1 = ftrue(xt, ut) = f(xt, ut) + wt, (1)

where t ∈ N denotes the task time step, ftrue describes the
true dynamics of the system (e.g., reality), and f is a smooth
function which is a model or an approximation of ftrue (e.g.,
physics-based or learned dynamics) that will be used for MPC.
wt ∈ W, where W ⊆ Rnw is a convex and compact set
containing the origin, is a bounded disturbance, which exists
due to model uncertainty, random noise, etc. [34]. The system
is subject to control constraints ut ∈ U ⊂ Rnu , such as
physical actuator limits, and safety constraints xt ∈ X ⊂ Rnx

that determine the safe operating region of the system of
interest. It is assumed that both sets are (strict) superlevel sets
of some continuously differentiable functions.

Development of a successful model predictive controller for
Eq. (1) relies on the fact that f is a good approximation
of the true dynamics ftrue. However, in practice, the system
under study is subject to large dynamical uncertainty through
effects such as unmodeled physics, random noise, etc., that
results in some error between ftrue and f , which is captured
by the additive disturbance w in the formulation above. The
objective will be to bound the deviation of the true state
trajectory x := (x0, x1, . . .), subject to disturbances, from
a reference trajectory x̄ := (x̄0, x̄1, . . .) that is determined
online by solving the nominal MPC problem defined below.
Throughout this work, we will use bold letters, such as x, to
represent trajectories of variables. For notational compactness,
we define the state-control trajectory as τ := (x,u) =
(x0, u0, x1, u1, . . . , xN ), with planning horizon N ∈ N. The
nominal MPC problem is, therefore, given as:

Problem 1 (Nominal MPC).

τ̄ =argmin
τ

J̄(τ ) :=

N−1∑
k=0

ℓ̄(xk, uk) + ϕ̄(xN ),

subject to xk+1 = f(xk, uk), x0 = x̄t,

uk ∈ U, xk ∈ X̄ ⊂ X,

where x̄t denotes the nominal state at MPC time step t
since the controller is employed in a receding horizon fashion
and re-optimized at every successor state and k is used to
denote predictive quantities. ℓ̄ : Rnx × Rnu → R and
ϕ̄ : Rnx → R are the nominal running and terminal
cost functions, respectively, which determine the task to be
solved. The set X̄ represents a “tightened” constraint set that
ensures the true state can be kept safe in the presence of
uncertainty [34, 43]. In other words, the nominal state must be
kept sufficiently far from the boundary of the true constraint



set X, such that the true state of the system will not violate
the safety constraints when subject to disturbances.

The nominal controller is often employed in isolation for
the control of Eq. (1) by solving Problem 1 online from
every true state xt. This approach is inherently robust to
small uncertainty providing one explanation for the success of
nominal MPC in practice, even when Problem 1 is not solved
fully at every time step due to restrictions on the available
computational resources [37, 1]. However, this approach is
only valid when the error between ftrue and f is small, i.e.,
when the disturbances are small. A potential failure mode of
nominal MPC when applied for the control of the true system
is safety violations caused by this large predictive error [34].

To address this shortcoming, tube-based MPC augments the
nominal controller with a feedback model predictive controller
that drives the state of the true system towards the nominal
trajectory. This controller is known as the ancillary MPC, and
solves online at every true state xt the following optimization:

Problem 2 (Ancillary MPC).

τ ∗ = argmin
τ

J(τ , t) :=

N−1∑
k=0

ℓ(xk, uk, x̄k, ūk)

+ ϕ(xN , x̄N ),

subject to xk+1 = f(xk, uk), x0 = xt,

uk ∈ U, xk ∈ X,

where ℓ : Rnx×Rnu×Rnx×Rnu → R and ϕ : Rnx×Rnx →
R are the ancillary running and terminal cost functions,
respectively, often chosen as ℓ = ∥x− x̄∥2Q + ∥u− ū∥2R and
ϕ = ∥x− x̄∥2Q for some positive definite matrices Q and R.
In Section IV, differentiable optimization will be applied to
make Q and R learnable, allowing for online adaptation and
tuning of the ancillary MPC. Due to the disturbances entering
the system Eq. (1), the true state xt ̸= x̄t in general. The role
of Problem 2 is to drive the true state of the system towards the
reference trajectory τ̄ , under the nominal predictive model f .
The disturbances affect the optimization through perturbations
on the initial state of Problem 2. For more details on the tube-
based MPC approach and its analyses, the reader is referred
to the works of Mayne et al. [34] and Rawlings et al. [43].

B. Embedded Barrier States

Consider the safe set X that is defined as the strict superlevel
set of a continuously differentiable function h : Rnx → R such
that

X := {x ∈ Rnx | h(x) > 0}.

The goal is to render the safe set X forward invariant, i.e.,
once the system is in the set, it stays in it for all future times
of operation. This is accomplished by defining an appropriate
barrier function B : X → R over the safety condition h
whose value “blows up” as the state of the system approaches
the unsafe region. The idea of embedded barrier states is to
augment the system with the state of the barrier and define
a new control problem that, when solved, guarantees safety

along with other performance objectives [3, 2]. The discrete
barrier state (DBaS), denoted bk, is defined by the dynamics

bk+1 = g(xk, uk, bk) = B(h(f(xk, uk))− γ(B(h(xk))− bk),

where γ ∈ [−1, 1]. Examples of suitable barrier functions
include the inverse barrier B(ζ) = 1/ζ and the log barrier
B(ζ) = − log ζ. The state of the system to be controlled is
then augmented by the barrier state x̂k = (xk, bk), resulting
in the augmented dynamics

x̂k+1 = f̂(x̂k, uk) =

[
f(xk, uk)

g(xk, uk, bk)

]
. (2)

The system Eq. (2) is called the safety-embedded system. The
set X is, therefore, rendered forward invariant if and only if
the barrier state of the system remains bounded for all time,
given that the system starts in the safe set [3].

Using the iterative linear-quadratic regulator (iLQR) [26]
with embedded DBaS guarantees positive definiteness of the
Hessians of the value function, providing guarantees of im-
provement of safe solutions and convergence (see Theorems 2
and 3 of [3]). The algorithm enjoys a computational efficiency
and fast convergence as shown by Almubarak et al. [3] and
in the MPC formulation by Cho et al. [14] compared to other
safe DDP-based approaches, such as penalty methods, control
barrier functions, and augmented Lagrangian methods, which
require multiple optimization loops and thus do not scale well
for real-time applications.

Nonetheless, in the interest of the proposed work and
in light of the requirement of starting in the safe region,
the solution to the open-loop optimal control problem may
be infeasible. A well established solution for barrier-based
methods is the relaxed barrier function, which was presented
in the linear MPC formulation by Feller and Ebenbauer [19]
using the logarithmic barrier function. In dependence of the
underlying relaxation, convergence guarantees and constraint
satisfaction were provided. Hence, in this work, recursive
feasibility of the tube-based MPC is pledged through the use of
a relaxed embedded barrier state that is similar conceptually
to the idea of relaxed barrier functions [19]. In essence, the
barrier function B is replaced with the relaxed barrier function
by taking a Taylor series approximation of the safety func-
tion h around a point α close to the constraint “unsatisfaction”,
i.e., close to h = 0, while reserving the advantages of using
barrier states within the iLQR. For example, for the inverse
barrier function, which is used throughout this work, we take a
quadratic approximation and define the strictly monotone and
continuously differentiable relaxed barrier function:

Bα(ζ) =

{
1/ζ if ζ ≥ α,

1/α− (ζ − α)/α2 + (ζ − α)2/α3 if ζ < α.

It is worth noting that the relaxation hyperparameter α deter-
mines the amount of relaxation such that limα→0 Bα(ζ) →
B(ζ). Enabled through differentiable optimization, the frame-
work described in Section IV allows an adaptation scheme
to be derived that modulates the amount of relaxation online



through updating α based on task performance and feasibility.
From the safe MPC via barrier methods perspective, the
proposed work provides a novel expansion of the works [3],
[14] and [19] to a tube-based MPC algorithm in which the
barrier state’s parameters, e.g., dynamics and cost penalization,
can be adapted or auto-tuned which greatly improves the
controls performance, as we show and discuss in more detail
in our experimentation provided in Section V.

In the sequel, we will use x and f to represent the embedded
state and the safety-embedded dynamics in our development
of the main proposition for notational simplicity. It should
be understood that we are working with the safety-embedded
system and safety is guaranteed by the boundedness of the
barrier state.

III. GENERALIZED DIFFERENTIABLE OPTIMAL CONTROL
THROUGH THE IMPLICIT FUNCTION THEOREM

We derive a general differentiable optimal control frame-
work for computing gradients through the solution of a pa-
rameterized optimal control problem (τ ∗ of Problem 3 below).
This enables a principled manner through which the param-
eters of the control problem can be automatically adapted to
maximize both safety as well as the desired task performance.
The key result here is that the differentiable optimal control
algorithm has the same computational complexity as a sin-
gle finite-horizon LQR solve, namely O(N) in time. This
connection with LQR control justifies the use of a Gauss-
Newton approximation when backpropagating the derivatives
through time, allowing the dynamics and cost derivatives to
be reused between the optimal control solver (e.g., iLQR) and
the differentiable optimization. Furthermore, we show how
the gradient can be accumulated across the trajectory at an
O(1) memory cost, independent of the time horizon. This
prevents needing to store the entire trajectory of derivatives
in memory at once, which is an important consideration for
highly parameterized problems, e.g., when neural networks are
used to model the dynamics or cost function.

A. Differentiable Optimization

Our work is inspired by recent developments in implicit
differentiation — also known as differentiable optimization
— which is an emerging trend in machine learning [4, 6,
11, 10] that studies how to embed optimization processes as
end-to-end trainable components into learning-based architec-
tures. Differentiable optimization has seen large success in a
wealth of fields such as hyperparameter tuning [8, 28], meta-
learning [20, 42], and model-based reinforcement learning and
control [5, 24, 17, 22]. This subsection gives a brief overview
of differentiable optimization in the context of general opti-
mization problems. These results will be used afterwards to
develop a general differentiable optimal control methodology
and a differentiable robust MPC framework.

Consider the unconstrained minimization problem

z∗(θ) = argmin
z

φ(z, θ), (3)

where φ : Rnz×Rnθ → R is twice continuously differentiable,
z is the optimization variable, and θ is a vector of parameters
that influence the objective function to be minimized. The
implicit function theorem (IFT) provides a precise relation
between the optimal solution and the learning parameters by
defining z∗ as an implicit function of θ. Furthermore, it gives
an expression for the derivative ∂z∗

∂θ — the Jacobian of the
solution with respect to the parameters — and the conditions
under which this derivative is defined. This development is
necessary when the minimization process Eq. (3) is embedded
as a component within, e.g., a deep learning architecture.
This allows the parameters of the optimization process to
be optimized in an end-to-end fashion through the use of
backpropagation and other gradient-based algorithms.

Theorem 1 (Implicit function theorem [25]). Let F : Rnz ×
Rnθ → Rnz be a continuously differentiable function. Fix a
point (z0, θ0) such that F (z0, θ0) = 0. If the Jacobian matrix
of partial derivatives ∂F

∂z (z0, θ0) is invertible, then there exists
a function z∗(·) defined in a neighborhood of θ0 such that
z∗(θ0) = z0 and

∂

∂θ
z∗(θ) = −

(
∂

∂z
F (z∗(θ), θ)

)−1
∂

∂θ
F (z∗(θ), θ).

Proof: See Krantz and Parks [25] or de Oliveira [15].

Remark 1. The condition F (z0, θ0) = 0 may seem restrictive,
but the power of Theorem 1 is revealed when we exam-
ine the first-order optimality conditions for the minimization
problem Eq. (3) — a solution z∗ to Eq. (3) must satisfy
∇zφ(z

∗, θ) = 0. Therefore, the gradient of the function φ
satisfies the conditions of Theorem 1 as long as the matrix
of second-order partial derivatives of φ with respect to z,
namely the Hessian φzz := ∂

∂z∇zφ is invertible. Furthermore,
this generalizes naturally to constrained optimization problems
(e.g., z ∈ C ⊂ Rnz , for some constraint set C) by considering
the appropriate first-order optimality conditions of the problem
(e.g., the Karush-Kuhn-Tucker (KKT) conditions). Further
discussion can be found in recent works such as [10].

The IFT will be applied in the following subsection to derive
a general differentiable optimal control (DOC) framework.
This framework will be used to develop a robust MPC al-
gorithm in Section IV that is made adaptive through online
differentiable optimization.

B. General Learning Framework as Bilevel Optimization

We start by motivating the learning problem through the lens
of optimal control. For clarity of presentation, we focus on
the unconstrained case and provide discussion on the control-
constrained case in Appendix H. We consider the following
general parameterized optimal control problem of the form

Problem 3 (Parameterized OC).

τ ∗(θ) = argmin
τ

J(τ , θ) :=

N−1∑
k=0

ℓ(xk, uk, θ) + ϕ(xN , θ),

subject to xk+1 = f(xk, uk, θ), x0 = ξ(θ),



where ξ : Rnθ → Rnx is a differentiable function denoting the
initial condition of the problem (e.g., x̄t for the nominal MPC
and xt for the ancillary MPC) f : Rnx × Rnu × Rnθ → Rnx

is the parameterized dynamics, and ℓ : Rnx×Rnu×Rnθ → R
and ϕ : Rnx × Rnθ → R are the parameterized running and
terminal cost functions, respectively.

The solution τ ∗ depends on the problem parameters θ,
which represent the parts of the dynamics and the objective
that are learnable or adaptable, such as cost function weights
or unknown constants of a parametric, physics-based model.
In practice, these parameters θ are hand-tuned by a domain
expert and fixed during task execution. However, we propose
an alternative methodology enabled through differentiable op-
timization that allows the parameters to be learned and adapted
online through minimization of an appropriately specified loss
function describing the desired task behavior. The learning
objective is therefore defined as the following bilevel opti-
mization over the parameters of Problem 3:

Problem 4 (Learning Problem).

min
θ

L(τ ∗(θ)), (4)

where L is a differentiable loss function, such as the imitation
loss L = ∥τ ∗(θ)− τexpert∥2 where τexpert is generated by a
task expert, e.g., through human demonstration. Without loss
of generality, we will assume L does not depend on θ directly,
but the following results can be easily extended to such cases.

The goal will be to establish an efficient methodology to
learn the optimal parameters θ∗ by solving Problem 4. A
natural choice to learn these parameters is through gradient
descent. Using the chain rule, the gradient of the objective
Eq. (4) with respect to θ is given as

∇θL(τ
∗(θ)) =

(
∂τ ∗(θ)

∂θ

)⊤

∇τL(τ
∗(θ)).

This quantity is often referred to as a hypergradient to
distinguish it from the gradients of the lower-level problem.
The term ∇τL can be calculated straightforwardly as it is
often a simple analytic expression, e.g., for the imitation
learning loss defined earlier, the gradient is given simply as
∇τL = 2(τ − τexpert). The difficulty arises in calculating the
Jacobian ∂τ∗

∂θ efficiently — it is not obvious at first how to
take derivatives of a solution to Problem 3.

A naı̈ve approach to computing this Jacobian would be to
“unroll” the optimization algorithm itself, in a process similar
to automatic differentiation (AD). Indeed, this approach is
used to great effect in recent work [36, 9]. However, the
computational efficiency scales linearly with the number of
iterations K necessary to solve Problem 3, making it expensive
for highly nonlinear, non-convex problems that might require
many iterations to find a good solution. This motivates the use
of implicit differentiation and the IFT as introduced in Sec-
tion III-A, which enables us to derive an analytic expression
for the Jacobian ∂τ∗

∂θ without requiring full unrolling of the
lower-level optimizer.

We begin by introducing the optimality conditions for
Problem 3. This is a well-known result in optimal control
known as Pontryagin’s maximum principle [40].

Proposition 2 (Optimality conditions of Problem 3). Define
the real-valued function L for Problem 3, called the La-
grangian, as

L(z, θ) =
N−1∑
k=0

ℓ(xk, uk, θ) + λ⊤
k+1(f(xk, uk, θ)− xk+1)

+ λ⊤
0 (ξ(θ)− x0) + ϕ(xN , θ),

where λk ∈ Rnx , k = 0, 1, . . . , N are the Lagrange mul-
tipliers for the dynamics and initial condition constraints,
and z := (τ ,λ) = (λ0, x0, u0, . . . , λN , xN ) for notational
compactness.

Let τ ∗ be a solution to Problem 3 for fixed parameters θ.
Then, there exists Lagrange multipliers λ∗ which together with
τ ∗ satisfy ∇zL(z∗, θ) = 0.

Proof: The conditions ∇zL(z∗, θ) = 0 are the KKT
conditions for Problem 3. See Appendix A.

For reasons that will be clear soon, it is advantageous to
use differential dynamic programming (DDP) [31, 23] as the
optimization algorithm to solve Problem 3. DDP uses the
principle of dynamic programming [7] to solve Problem 3 effi-
ciently by reparameterizing the minimization over all possible
control trajectories as a sequence of minimizations proceeding
backwards-in-time.

More formally, DDP iteratively solves for and applies the
Newton step dz until convergence:

Lzz dz = −∇zL, (5)

which requires inverting the Hessian Lzz . However, naı̈vely
inverting this matrix is prohibitively expensive, since the size
of the matrix is quadratic in the time horizon of the problem,
i.e., the matrix inversion of Lzz is O(N3). To remedy this, we
utilize dynamic programming and the sparsity induced by the
constraints of the control problem to rewrite Eq. (5) as a series
of backwards difference equations — in optimal control, these
are known as the Riccati equations. This allows the solution of
Eq. (5) to be computed with efficiency linear in the horizon N .
This same insight will be key to efficiently computing the
implicit derivative of Problem 3 defined below.

Proposition 3 (Implicit derivative of Problem 3). Let τ ∗ be a
solution to Problem 3 for fixed parameters θ. By Proposition 2,
Theorem 1 holds with F = ∇zL. Furthermore, the Jacobian
∂z∗

∂θ is given as

∂

∂θ
z∗(θ) = −L−1

zzLzθ. (6)

Proof: See Appendix B.

Remark 2. Note that the structure of both Eq. (5) and Eq. (6)
here is similar, with the only difference being the fact that
the inverse Hessian is applied to the gradient ∇zL in Eq. (5)
while it is multiplied with a matrix of partial derivatives Lzθ

in Eq. (6). In fact, solving Eq. (6) directly allows one to derive



the Pontryagin differentiable programming (PDP) framework
proposed by Jin et al. [24], which was originally derived by
directly differentiating the KKT conditions of Problem 3 with
respect to θ.

Corollary 4 (Pontryagin differentiable programming [24]).
Let the conditions of Proposition 2 and Proposition 3 hold.
Then, the differentiable Pontryagin conditions ((Eq. (13) of
Jin et al. [24]) are equivalent to solving the linear system
Eq. (6).

Proof: This can be seen by expanding the matrix multi-
plication in Eq. (6). See Appendix C.

Corollary 4 implies that rather than differentiating the
Pontryagin conditions directly, a more general framework
can be derived by applying the IFT to the control problem.
Furthermore, the IFT describes the conditions under which
this derivative exists and can be calculated, which generalizes
the work by Jin et al. [24].

However, this process requires solving the set of matrix
equations in Eq. (6), i.e., a matrix control system backwards-
in-time. This is inefficient due to requiring the computation
and storage of the intermediate Jacobians ∂x∗

k

∂θ and ∂u∗
k

∂θ along
the entire trajectory. We will show next that an improvement
can be made by taking advantage of an insight similar to the
computation of vector-Jacobian products (VJPs) in AD.

Theorem 5 (Differentiable Optimal Control). Let z denote
the augmented vector consisting of τ and λ. In addition, let
the conditions of Proposition 2 and Proposition 3 hold. Then,
the gradient of the loss L with respect to θ is given by

∇θL(z
∗(θ)) = Lθzδz, (7)

where the vector δz is given by solving the linear system

Lzzδz = −∇zL. (8)

Proof: See Appendix D.

Remark 3. Theorem 5 shows that, rather than calculating
L−1
zzLzθ directly as in Eq. (6), we can instead start by solving

the linear system Eq. (8) for the vector δz. Then, the gradient
∇θL can be computed through a simple matrix multiplication
(Eq. (7)). This general algorithm is presented in Algorithm 1,
whose full derivation is provided in the Appendix E.

Algorithm 1: Differentiable Optimal Control (DOC)
Input: Derivatives of L (equivalently f , ℓ, ϕ, and ξ)

and L along the solution z∗

Output: Gradient of upper-level loss ∇θL
1 Ṽx,Vxx, k̃,K ← Solve backward pass equations

(Algorithm 3 of Appendix E);
2 ∇θL← Solve forward pass equations (Algorithm 4 of

Appendix E);

As established earlier and presented in Algorithm 1, solving
systems of the form Eq. (8) can be accomplished through the
DDP equations by replacing the gradient of the Lagrangian

∇zL in Eq. (5) with the gradient of the upper-level loss
∇zL. This fact illustrates the connection between the lower-
level control problem (Problem 3) and the upper-level learning
problem (Problem 4) and highlights the advantages of implicit
differentiation — by taking advantage of the structure of the
lower-level problem, an efficient algorithm can be derived for
computing hypergradients of the upper-level problem. This
algorithm is presented in Algorithm 1 and has O(N) time
complexity and O(1) memory complexity, where N is the
look-ahead horizon of the MPC. Therefore, our approach
scales similarly to conventional MPC, and furthermore, this
connection shows that it is advantageous to use DDP as the
lower-level control solver since the necessary derivatives for
DDP (e.g., Lzz) can be reused during the computation of the
hypergradient in Eqs. (7) and (8).

Remarkably, by deriving Theorem 5 through the IFT, the
proposed DOC methodology is independent of how a solution
to Problem 3 is generated. In other words, rather than begin
from an existing optimal control algorithm, as is presented by,
e.g., Amos et al. [5] in the context of iLQR or Dinev et al. [17]
in the context of DDP, we show that a single framework en-
ables the differentiable optimization of any control algorithm,
as long as the produced solution itself satisfies the optimality
conditions of Proposition 2.

An additional benefit of the independence from the optimal
control solver is the fact that the gradient computation does
not depend on the number of solver iterations K required to
reach a solution. While unrolling a numerical solver through
AD would incur computational complexity O(KN) in both
time and memory, our approach maintains O(N) complexity
independent of the underlying solver. These facts allow the
gradient computation to be efficient enough for the adaptation
of a real-time MPC controller. Further speedups can be in-
corporated by adopting a Gauss-Newton approximation when
solving Eq. (8), at the cost of numerical error. The particular
choice of a Gauss-Newton approximation allows one to derive
the seminal differentiable MPC (Diff-MPC) by Amos et al. [5].
This is formalized in the following corollary:

Corollary 6 (Diff-MPC [5]). Diff-MPC is equivalent to using
a Gauss-Newton approximation when solving Eq. (8).

Proof: See Appendix F.

C. Numerical Precision Guarantees
Recent work by Blondel et al. [10] has provided the-

oretical guarantees on the numerical precision of implicit
differentiation-based approaches for a general class of prob-
lems. In practice, the implicit derivative ∂z∗

∂θ is computed at
some suboptimal point ẑ that approximates the optimal solu-
tion z∗. Therefore, it is helpful to understand both theoretically
and empirically the error in the Jacobian approximation as it
directly affects the quality of the final hypergradients.

Using Proposition 3, we can define the Jacobian estimate at
(ẑ, θ) as the function J(ẑ, θ) := −L−1

zz (ẑ, θ)Lzθ(ẑ, θ) ≈ ∂z∗

∂θ .
By assuming Lzz is well-conditioned and Lipschitz and Lzθ

is bounded and Lipschitz, it can be shown that the Jacobian
estimate error is on the same order as that of approximating



z∗ with ẑ, namely
∥∥∥J(ẑ, θ)− ∂z∗

∂θ

∥∥∥ ≤ C ∥ẑ − z∗∥ ([10,
Theorem 1]).

These bounds are not very useful in the context of optimal
control since we rarely construct the entire Hessian matrices
of the Lagrangian Lzz , etc. Furthermore, as shown previ-
ously, these matrices have sparse structure due to the time-
varying nature of the problem, and thus the bounds for the
general case are not very informative. Therefore, we specialize
these numerical guarantees for general optimal control prob-
lems by showing that the stagewise Jacobian errors, denoted∥∥∥∂x̂k

∂θ −
∂x∗

k

∂θ

∥∥∥ and
∥∥∥∂ûk

∂θ −
∂u∗

k

∂θ

∥∥∥, grow linearly with respect
to the errors in the solution approximation ∥x̂k − x∗

k∥ and
∥ûk − u∗

k∥ in a recursive manner. Notably, due to the temporal
structure of the control problem, the Jacobian errors at time
k only depend on the state and control errors up to and
including time k. These bounds hold under typical assumptions
on quantities related to the optimal control problem, such as
the positive definiteness of the matrix Quu (computed during
the backward pass of the algorithm, line 1 of Algorithm 1)
and the local Lipschitzness of the dynamics Jacobians. To
the authors’ best knowledge, this is the first work to present
theoretical guarantees on the numerical precision of IFT-based
differentiable control algorithms. An abbreviated statement of
the theorem is given below with the full version and its proof
appearing in Appendix G.

Theorem 7 (Jacobian estimate error). Let the Jacobians of
the dynamics fxk

, fuk
, fθk and the Hessians of the state-

action value function Q
(k)
uu , Q(k)

ux , and Q
(k)
uθ be locally Lipschitz

in (xk, uk) and bounded in a neighborhood of the optimal
trajectory z∗. Furthermore, let Q(k)

uu be positive definite in a
neighborhood of (x∗

k, u
∗
k) for all k = 0, 1, . . . , N−1. Then, the

error in using Proposition 3 to compute the implicit derivatives
of the control problem is upper bounded by∥∥∥∥∂ûk

∂θ
− ∂u∗

k

∂θ

∥∥∥∥ ≤ k∑
t=0

Ck,t(∥x̂t − x∗
t ∥+ ∥ût − u∗

t ∥),∥∥∥∥∂x̂k+1

∂θ
−

∂x∗
k+1

∂θ

∥∥∥∥ ≤ k∑
t=0

Dk+1,t(∥x̂t − x∗
t ∥+ ∥ût − u∗

t ∥),

for constants Ck,t, Dk+1,t > 0.
While our proposed algorithm avoids computing the inter-

mediate Jacobian J(ẑ, θ) explicitly, we nevertheless empiri-
cally validate the Jacobian estimate error on multiple nonlinear
systems to get a quantitative understanding of the numerical
precision of our approach in practice. We run DDP for an
increasing number of iterations to generate a sequence of
approximate solutions ẑ and plot the Jacobian estimate error∥∥∥J(ẑ, θ)− ∂z∗

∂θ

∥∥∥ as a function of the iterate error ∥ẑ − z∗∥.
Fig. 3 shows the results for the quadrotor system, with plots
for the other systems given in Appendix I. Since a closed-
form expression of ∂z∗

∂θ is not available, we use numerical
differentiation (finite differences) to compute the ground truth
Jacobian approximately as suggested by Blondel et al. [10].

“Unrolling” corresponds to unrolling the DDP iterations as a

Fig. 3: Jacobian estimate errors on the quadrotor system as a
function of DDP iterate error.

differentiable compute graph and backpropagating to compute
Jacobians via AD. It should be noted there is irreducible error
due to the use of finite differences to approximate ∂z∗

∂θ . The
proposed DOC outperforms both unrolling and Diff-MPC [5]
in terms of numerical error. Diff-MPC has nearly constant
error regardless of distance to the optimal solution due to
dropping the second-order dynamics derivative terms in the
algorithm. In conclusion, we observe a qualitative benefit of
our IFT-based approach that supports the theory: there is
a large region around the optimal trajectory z∗ where the
Jacobian error grows very slowly, suggesting our approach is
advantageous for producing accurate derivatives in the context
of differentiable control.

Further gradient error as well as timing comparisons be-
tween our proposed Algorithm 1 and the algorithms of Amos
et al. [5], Jin et al. [24], and Dinev et al. [17] are provided in
Appendix I.

IV. DIFFERENTIABLE TUBE-BASED MPC

When experiencing large disturbances, MPC under the
nominal system model can fail. Although tube-based MPC
is designed to tackle such a problem, determining the cost
parameters necessary to achieve robustness is difficult in
practice due to the nonlinear dependence between the nominal
controller and the ancillary controller. Moreover, tuning fixed
parameters offline to work for one scenario does not generalize
for online, real-time MPC applications, where there may exist,
e.g., a large sim-to-real gap. This motivates a method that
can update the robust controller parameters automatically and
online.

We start by redefining the nominal MPC introduced in
Problem 1 to be compatible with the differentiable optimal
control framework presented in Section III. The nominal
controller seeks to optimize the parameterized safe nominal
trajectory τ̄ in the absence of disturbances by solving the
following optimization:



Problem 5 (Differentiable Nominal MPC).

τ̄ (θ̄) = argmin
τ

J̄(τ , θ̄) :=

N−1∑
k=0

ℓ̄(xk, uk, θ̄) + ϕ̄(xN , θ̄),

subject to xk+1 = f(xk, uk, θ̄), x0 = x̄t,

uk ∈ U, xk ∈ X̄(θ̄) ⊂ X.

In contrast with the original definition of Problem 1, the
dynamics f , running cost ℓ̄, and terminal cost ϕ̄ have been pa-
rameterized with θ̄ to denote the fact that these parameters are
made tunable through the use of differentiable optimization.
Similarly, X̄ represents the tightened state constraint set, now
parameterized by θ̄. This parameterization enables the online
determination of the effective size of X̄ through differentiable
optimization, instead of hand tuning it using, e.g., offline data.

In our algorithm, the parameterization of X̄ with θ̄ is enabled
through the adoption of barrier states for enforcing safety
constraints and their penalizations in the cost function. In the
use of DBaS as described in Section II-B, an additional state
within the cost function is introduced. For example, for the
cost function J , we will assume that it has the partitioned
form Ĵ = J +

∑N
k=0 qbb

2
k, with qb > 0 being a tunable

parameter quantifying the strength of the barrier. This enables
the online determination of the effective size of the feasible
region X̄ through adaptation of qb based on task performance
and predicted safety of the true system. Nonetheless, it should
be noted that the proposed method is general and this is
one specific choice that the authors find to work very well
in practice. We will show different controller designs and
solutions in Section V.

Consequently, the differentiable ancillary MPC is defined
by bringing the original problem formulation from Problem 2
into the form of Problem 3:

Problem 6 (Differentiable Ancillary MPC).

τ ∗(θ) = argmin
τ

J(τ , θ, t) :=

N−1∑
k=0

ℓ(xk, uk, x̄k, ūk, θ)

+ ϕ(xN , x̄N , θ),

subject to xk+1 = f(xk, uk, θ), x0 = xt, uk ∈ U,

where the dynamics f , running cost ℓ, and terminal cost ϕ
have been parameterized with θ.

It is worth highlighting again that the safety constraint
does not appear in Problem 6 as the state equation represents
the safety-embedded system through the use of the DBaS as
mentioned earlier. This has the effect of increasing the state
dimension of the problem but does not affect the algorithm
computationally as the input dimension is unchanged (DDP-
based methods scale with the size of the control input but
not the state input [31]). Note that this means that θ includes
the DBaS tunable parameters such as γ and α for the DBaS
feedback and the relaxation of the barrier condition for the
recursive feasibility of the algorithm when needed.

Through the introduction of the DBaS, an additional degree
of freedom that helps determine the tightness of the constraint

satisfaction is added to the control problem. Therefore, our
method is able to adjust the conservativeness of the nominal
controller while also adapting the tube shape and size by
updating the cost parameters of the ancillary controller based
on the disturbances encountered. This allows for an efficient
computational and engineering framework for robust control.
Namely, the nominal controller can be tuned for task com-
pletion in the well-understood deterministic case, as is typical
in standard nonlinear control design. The adaptive ancillary
controller can then be used to augment the nominal controller
for robustness, responding to disturbances when necessary.

Next, we propose an algorithm that applies the DOC
methodology presented in Section III to the real-time tuning
of tube-based controllers of the form given by Problem 5 and
Problem 6. In order to optimize both the nominal and ancillary
controller, we propose to use a loss function of the form

L(τ ∗(θ), τ̄ (θ̄)) =
∥∥x∗(θ)− x̄(θ̄)

∥∥2
2
+ ∥b∗(θ)∥22 , (9)

but modify the loss in the experiments as necessary to capture
task-specific objectives. Notably, this choice of objective is
beneficial as it captures the primary goal of tube-based MPC,
which is to drive the true state x towards the nominal state
x̄ while maintaining safety of the true system. Furthermore,
this choice allows the parameters of the nominal MPC to be
updated based on the expected performance of the ancillary
MPC, allowing the nominal MPC to respond to the environ-
ment in an optimal manner. The general differentiable tube-
based MPC algorithm is presented in Algorithm 2 and is a
straightforward application of Algorithm 1.

Algorithm 2: Differentiable Tube-based Model Pre-
dictive Control (DT-MPC)

Input: Initial nominal parameters θ̄ and ancillary
parameters θ, learning rate η, task horizon H

1 x̄0 ← x0;
2 for t = 0, . . . ,H do
3 τ̄ (θ̄)← Solve Problem 5 starting from x̄t;
4 τ ∗(θ)← Solve Problem 6 starting from xt;
5 ∇θ̄L,∇θL← Compute gradients of

L(τ ∗(θ), τ̄ (θ̄)) using Algorithm 1;
// Gradient descent step

6 θ̄ ← θ̄ − η∇θ̄L; θ ← θ − η∇θL;
// True and nominal dynamics

7 xt+1 ← f(xt, u
∗
t ) + wt; x̄t+1 ← f(x̄t, ūt);

8 end

Figure 1 visualizes the information and gradient flow of the
proposed architecture. In summary, Algorithm 2 solves the
nominal MPC (Problem 5) from the current nominal state x̄t

with fixed nominal parameters θ̄, which consist of the DBaS
parameters and task-dependent cost function weights (Line 3).
The solution τ̄ is passed to the ancillary MPC and Problem 6
is solved starting from the current state xt for fixed ancillary
parameters θ, which consist of the DBaS parameters and the
cost function weights that determine the tracking cost of the



feedback controller (Line 4). Gradients of a task-dependent
loss function are computed with respect to both the nominal
and the ancillary parameters through Algorithm 1 (Line 5), and
a gradient update is performed (Line 6). Finally, the ancillary
control is sent to the true system, and the controller receives
an observation of the next state perturbed by the disturbance
wt. Meanwhile, the nominal system propagates forward in the
absence of noise or uncertainty (Line 7), and the process is
repeated.

The proposed algorithm improves upon and solves problems
within previous contributions in multiple directions. On the
one hand, for complex problems, many parameters need to be
tuned and carefully selected, e.g., through trial and error, in
order for the controller to perform the desired task well. The
proposed DT-MPC provides a theoretically sound and practical
approach to auto-tune the different parameters involved to
achieve a high level of autonomy. On the other hand, not
only does the proposed algorithm provide robustness to the
safe trajectory optimization problem through tube-based MPC,
but it also provides adaptability and auto-tuning of the DBaS
weight in the DBaS-iLQR MPC formulation by Cho et al. [14].
Rather than keeping the weight fixed, which might result in an
overly-conservative solution that withstands disturbances but
prevents task completion, the proposed DT-MPC results in an
adaptive, time-varying weight that is used to solve the safety-
critical MPC and therefore better approximates the original
optimal control problem. This is especially true when the
nominal controller uses a poor model that might guide the
ancillary controller to violate the safety condition. Moreover,
through the use of relaxed barriers along with DDP, the work
by Feller and Ebenbauer [19] is generalized to the nonlinear
case while auto-tuning the relaxation parameter α online. This
allows us to recover the original barrier when needed.

V. EXPERIMENTS

The generality of the proposed DT-MPC is established
through benchmarks on five nonlinear robotics systems subject
to highly non-convex constraints such as dense obstacle fields.
Furthermore, we present a hardware experiment showing the
ability of DT-MPC to adapt to an out-of-distribution test
case. In the experiments that follow, the nominal MPC is
tuned to perform the task successfully and then the algorithms
are deployed on the true system, without further tuning.
This puts the proposed framework to the test, especially in
comparison to the non-adaptive, nonlinear tube-based MPC.
This suite of experiments showcases how the differentiable
framework enables robust control through online adaptation
of the necessary parameters to accomplish the task while
maintaining safety. Table I summarizes the results of the five
simulation experiments, detailing the overall task completion
percentage as well as the percentage of safety violations for
each algorithm. Specific numerical information related to the
experiments, such as the parameterization for each controller
as well as timing comparisons between algorithms, is provided
in Appendix J.

A. Dubins Vehicle

As an illustrative example, a Dubins vehicle task is set
up where the goal is to reach a target state of (10, 10) m
while avoiding obstacles, as shown in Fig. 4. The vehicle
starts at the origin facing the upper-right direction and, at
every timestep, receives disturbances sampled uniformly from
the range [−0.05, 0.05] in both the xy position as well as its
orientation. The nominal MPC parameters are kept fixed, while
the ancillary MPC is allowed to adapt through minimization
of the loss defined in Eq. (9).

Fig. 4: Controlled Dubins vehicle trajectories subject to large
noise. NT-MPC trajectories diverge from the nominal trajec-
tory and the uncertainty increases over time. Meanwhile, DT-
MPC adapts to the environment, maintaining safety and robust
task performance.

Controlled trajectories under both tube-based MPC algo-
rithms for 50 different disturbance realizations are plotted in
Fig. 4. DT-MPC bounds the true system within a safer tube
around the nominal trajectory, and the trajectories remain on
the same side of the central obstacle. Additionally, the size of
the tube is updated based on safety (proximity to obstacles),
while the NT-MPC tube grows as the trajectory proceeds.

While both algorithms remain safe and avoid collisions
(see Table I), only DT-MPC is able to complete the task the
majority of the time. This is attributed to the fact that the tube
around the nominal trajectory is both tighter and safer allowing
for more robust control. Furthermore, a qualitatively beneficial
emergent behavior is observed where the tube of trajectories
becomes tighter around the nominal trajectory when the state
is most unsafe.

B. Quadrotor

The second experiment is a quadrotor navigating through a
dense field of spherical obstacles, where the goal is to reach
the target location of (10, 10, 10) m, starting from the origin,
in the presence of large disturbances. The system experiences
disturbances in the position and Euler angles sampled uni-
formly from the range [−0.01, 0.01], while disturbances in



Dubins Vehicle Quadrotor Robot Arm Cheetah Quadruped
Successes Violations Successes Violations Successes Violations Successes Violations Successes Violations

NT-MPC 14% 0% 14% 20% 0% 56% 26% 4% 20% 0%
DT-MPC (ours) 100% 0% 76% 4% 78% 10% 70% 0% 64% 0%

TABLE I: Success and safety violation percentage for each algorithm over 50 trials per task. For successes, higher is better,
while for violations, lower is better. Success is defined as arriving close to a target state, while a violation is defined as colliding
with an obstacle or violating the safety constraints. The magnitude of disturbances are upper-bounded by 0.05, 0.1, 0.1, 0.05
and 0.05 for each system, respectively.

Fig. 5: Environment for the robot arm task.

the linear and angular velocities are sampled from a larger
range of [−0.1, 0.1] — this choice emulates large unmodeled
forces and moments in the dynamics. Like the Dubins vehicle
experiment, the nominal MPC parameters are fixed, while the
ancillary MPC is adapted through minimization of Eq. (9),
balancing tracking performance with safety.

From Fig. 2 and Table I, it can be seen that NT-MPC
is unable to maintain robustness, resulting in 20% of the
trajectories hitting obstacles or diverging from the nominal
system, and only 14% of trajectories are able to solve the
task. On the other hand, the proposed DT-MPC bounds the
true system within a safer tube around the nominal trajectory
by tuning the ancillary MPC in real-time, drastically increasing
the success rate to 76% with only 4% violations.

C. Robot Arm

A 6-DOF torque-controlled robot arm with three links is
used to test the ability of the proposed approach to adapt both
the nominal and ancillary controller to respond to disturbances.
A visualization for the task is given in Fig. 5. The goal is to
bring the end effector to the location of (2, 0, 1) m, starting
from a random initial orientation, in the presence of large
disturbances and obstacles.

Disturbances in the angles and angular velocities at
every timestep are sampled uniformly from the ranges
[−0.01, 0.01] rad and [−0.1, 0.1] rad s−1, respectively, which,
like the quadrotor experiment, corresponds to very large
unmodeled forces and moments. For this task, the nominal
controller (tuned for deterministic task completion) is too
aggressive for the magnitude of disturbances received, leading

to a large number of failures even when controlled using NT-
MPC. Meanwhile, the proposed DT-MPC is able to adapt the
nominal controller to be less aggressive (by tuning the barrier
state cost weights) while simultaneously tuning the ancillary
controller to be more robust.

D. Cheetah

In the next experiment, we design a locomotion task for the
cheetah model provided by the DeepMind Control Suite [49].
The objective of the controller is to drive the cheetah to a
target position of 5m in 3 s, requiring an average velocity of
1.67m/s, while maintaining safe operation. Safety is enforced
by constraining the pitch angle of the cheetah to stay within
the range [−π/4, π/4] — when the pitch angle becomes larger
than these bounds, it is difficult in general for the cheetah to
recover, especially in the presence of large noise. Disturbances
are injected into the velocity states and are sampled uniformly
from [−0.05, 0.05]. Additional control noise is added sampled
from N (0, 0.02).

For DT-MPC, we use the loss L = ∥p∗
x − p̄x∥22 + ∥b∗∥22,

where px is the state corresponding to the x-position, and allow
the running cost and barrier state parameters of the nominal
MPC and the ancillary MPC to be adapted online. Notably,
the terminal cost is kept fixed for the nominal MPC to ensure
the task objective information is not lost. The loss function is
selected to only penalize the x-position as otherwise all of the
states are weighted equally and the ancillary MPC prefers to
default to a stable (yet safe) configuration rather than complete
the task.

The results in Table I show that, while NT-MPC fails to
reach the target in the majority of the cases and occasionally
violates the safety of the system, the proposed DT-MPC is able
to adapt the entire robust MPC architecture for task completion
while maintaining safe control. A sample visualization of one
trial per algorithm is provided in Fig. 6.

E. Quadruped

The final simulation experiment is a locomotion task using
the quadruped model provided by the DeepMind Control
Suite [49]. The system has 56 states and 12 controls, and the
objective is to drive the quadruped towards a target position
of 2.5m in 2 s requiring an average velocity of 1.25m/s.
Dynamical uncertainty is simulated by perturbing the velocity
states with a disturbance sampled from the range [−0.05, 0.05]
and introducing control noise sampled fromN (0, 0.01). Safety
is determined by constraining the Euler angles of the system



(a) Nonlinear tube-based MPC. The lack of adaptation causes the cheetah to flip over.

(b) Differentiable tube-based MPC. Adaptation produces a stable running behavior and allows the cheetah to reach the target safely.

Fig. 6: Comparison of tube-based MPC approaches on the DeepMind Control Suite cheetah robotics system [49].

such that the quadruped does not flip over ([−π/2, π/2] for
the roll and yaw angles and [−1.0, 1.0] for the pitch angle).
Figure 7 provides a visualization of the model and task.

The loss for DT-MPC is selected to be the same as the chee-
tah experiment, namely L = ∥p∗

x − p̄x∥22 + ∥b∗∥
2
2. Similarly,

both the nominal and ancillary MPC running cost and barrier
state parameters are adapted online.

Like the robot arm and cheetah experiment, the nominal
controller in NT-MPC has no awareness of the true task
performance. Therefore, the system controlled under NT-MPC
has difficulty reaching the target. While the deterministic nom-
inal trajectory reaches the target state during every trial, the
ancillary controller cannot keep up with the desired aggressive
jumping maneuver due to the disturbances. This causes the
gap between the nominal trajectory and true state to grow
over time. Meanwhile, the system controlled under DT-MPC
allows the nominal controller to adapt based on the tracking
performance of the ancillary MPC. Furthermore, the ancillary
MPC is adapted online to keep the system safe. This results
in successful aggressive jumping maneuvers such as the one
shown in the bottom right of Fig. 7. Overall, DT-MPC remains
safe while increasing the task success rate by over 200% (20%
success rate for NT-MPC vs. 64% success rate for DT-MPC).

F. Hardware Experiment - Robotarium

Finally, we implement the proposed methodology on the
Robotarium (Fig. 8), a state-of-the-art, remotely accessible
robotics hardware platform for multi-agent control [52]. DT-
MPC is applied for the safe, real-time control of a differential
drive robot under a shifting task distribution. The controller is
tuned offline on a given task distribution but needs to adapt
online to a new, never-before-seen task. In the parlance of
machine learning, the controller needs to generalize to a novel
task that is outside of the training distribution.

The goal of the controller is to safely navigate through a
corridor while avoiding the other agents, modeled as circular
obstacles. As a baseline, the NT-MPC controller is tuned
on a fixed task distribution where the other agents remain
stationary throughout the experimental trial. NT-MPC is robust
to disturbances due to both modeling error and process noise
and can reach the target state successfully (Fig. 8a).

During test time, the other agents are allowed to move with
some small random velocity. The non-adaptive NT-MPC is
unable to respond to the change in task distribution effectively,
resulting in safety violations early in the trial (Fig. 8b). We
attempt 10 retries of the NT-MPC controller, and during all of
the trials, the agent violates the safety of the system by driving
too close to the first two obstacles. Meanwhile, the DT-MPC
agent quickly finds a suitable controller tuning that maintains
safety while ensuring robust task completion (Fig. 8c). The
addition of online differentiable optimization for adaptation
of the cost function parameters allows the DT-MPC agent
to adapt to the new environment quickly and efficiently. The
JAX-based Python implementation of our method runs at over
50Hz on the Robotarium — we expect further speedups can be
achieved through a lower-level implementation (e.g., in C++).

VI. CONCLUSION

This work has proposed a general algorithm for differ-
entiable optimal control with a unified perspective derived
from applying the implicit function theorem to the lower-
level control problem. We have detailed how to apply the
methodology to the real-time tuning of tube-based MPC
controllers, illustrating a principled manner for which to learn
the problem parameters of any nonlinear control algorithm.
Our framework allows for the robust, adaptive, and real-time
control of nonlinear systems in the presence of non-convex
constraints and large uncertainties. The generality of the



(a) Nonlinear tube-based MPC. The quadruped gets stuck because the true state diverges from the nominal due to the disturbances.

(b) Differentiable tube-based MPC. The adaptation enables the quadruped to successfully reach the target despite large disturbances.

Fig. 7: Comparison of tube-based MPC approaches on the DeepMind Control Suite quadruped system [49].

method is verified for the robust control of multiple nonlinear
systems both in simulation and on real hardware. Furthermore,
we provide theoretical guarantees on the numerical precision
of our approach and show how our work generalizes state-of-
the-art differentiable control algorithms. We emphasize the fact
that our proposed architecture enables the real-time tuning of
any tube-based MPC algorithm. Promising future extensions
of the work include learning the dynamical uncertainty and
adapting the model used by the MPC controllers.
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Hoyer, Felipe Llinares-López, Fabian Pedregosa, and Jean-Philippe Vert.
Efficient and modular implicit differentiation. Advances in Neural
Information Processing Systems, 35:5230–5242, 2022.
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Advances in trajectory optimization for space vehicle control. Annual
Reviews in Control, 52:282–315, 2021.

[30] Martina Mammarella, Dae Young Lee, Hyeongjun Park, Elisa Capello,
Matteo Dentis, and Giorgio Guglieri. Attitude control of a small
spacecraft via tube-based model predictive control. Journal of Spacecraft
and Rockets, 56(6):1662–1679, 2019.

[31] David Mayne. A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems. International Journal
of Control, 3(1):85–95, 1966.

[32] David Q Mayne. Model predictive control: Recent developments and
future promise. Automatica, 50(12):2967–2986, 2014.

[33] David Q Mayne, Eric C Kerrigan, and Paola Falugi. Robust model
predictive control: Advantages and disadvantages of tube-based methods.
IFAC Proceedings Volumes, 44(1):191–196, 2011.

[34] David Q Mayne, Erric C Kerrigan, EJ Van Wyk, and Paola Falugi. Tube-
based robust nonlinear model predictive control. International Journal
of Robust and Nonlinear Control, 21(11):1341–1353, 2011.

[35] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic
Course, volume 87. Springer Science & Business Media, 2003.

[36] Masashi Okada, Luca Rigazio, and Takenobu Aoshima. Path integral
networks: End-to-end differentiable optimal control. arXiv preprint
arXiv:1706.09597, 2017.

[37] Gabriele Pannocchia, James B Rawlings, and Stephen J Wright. Con-
ditions under which suboptimal nonlinear MPC is inherently robust.
Systems & Control Letters, 60(9):747–755, 2011.

[38] Ian R Petersen and Roberto Tempo. Robust control of uncertain systems:
Classical results and recent developments. Automatica, 50(5):1315–
1335, 2014.

[39] Ph Poignet and Maxime Gautier. Nonlinear model predictive control of
a robot manipulator. In International Workshop on Advanced Motion
Control, pages 401–406. IEEE, 2000.

[40] Lev Semenovich Pontryagin. Mathematical theory of optimal processes.
Routledge, 2018.

[41] S Joe Qin and Thomas A Badgwell. A survey of industrial model
predictive control technology. Control Engineering Practice, 11(7):733–
764, 2003.

[42] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine.
Meta-learning with implicit gradients. Advances in Neural Information
Processing Systems, 32, 2019.

[43] James Blake Rawlings, David Q Mayne, and Moritz Diehl. Model
Predictive Control: Theory, Computation, and Design, volume 2. Nob



Hill Publishing Madison, WI, 2017.
[44] Francesco Sabatino. Quadrotor control: Modeling, nonlinear control

design, and simulation. Master’s thesis, KTH Royal Institute of Tech-
nology, 2015.

[45] Michael G Safonov. Origins of robust control: Early history and future
speculations. Annual Reviews in Control, 36(2):173–181, 2012.

[46] Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited dif-
ferential dynamic programming. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 1168–1175. IEEE, 2014.

[47] Emanuel Todorov and Weiwei Li. A generalized iterative LQG method
for locally-optimal feedback control of constrained nonlinear stochastic
systems. In Proceedings of the 2005, American Control Conference,
2005., pages 300–306. IEEE, 2005.

[48] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ international
conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[49] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven
Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, Nicolas Heess, and
Yuval Tassa. dm control: Software and tasks for continuous control.
Software Impacts, 6:100022, 2020. ISSN 2665-9638.

[50] Pierre-Brice Wieber. Trajectory free linear model predictive control for
stable walking in the presence of strong perturbations. In International
Conference on Humanoid Robots, pages 137–142. IEEE, 2006.

[51] Grady Williams, Brian Goldfain, Paul Drews, Kamil Saigol, James M
Rehg, and Evangelos A Theodorou. Robust sampling based model
predictive control with sparse objective information. In Robotics:
Science and Systems, volume 14, page 2018, 2018.

[52] Sean Wilson, Paul Glotfelter, Li Wang, Siddharth Mayya, Gennaro
Notomista, Mark Mote, and Magnus Egerstedt. The Robotarium:
Globally impactful opportunities, challenges, and lessons learned in
remote-access, distributed control of multirobot systems. IEEE Control
Systems Magazine, 40(1):26–44, 2020.

APPENDIX A
PROOF OF PROPOSITION 2

Proposition 2 (Optimality conditions of Problem 3). Define
the real-valued function L for Problem 3, called the La-
grangian, as

L(z, θ) =
N−1∑
t=0

ℓ(xk, uk, θ) + λ⊤
k+1(f(xk, uk, θ)− xk+1)

+ λ⊤
0 (ξ(θ)− x0) + ϕ(xN , θ),

(10)

where λk ∈ Rnx , k = 0, 1, . . . , N are the Lagrange mul-
tipliers for the dynamics and initial condition constraints,
and z := (τ ,λ) = (λ0, x0, u0, . . . , λN , xN ) for notational
compactness.

Let τ ∗ be a solution to Problem 3 for fixed parameters θ.
Then, there exists Lagrange multipliers λ∗ which together with
τ ∗ satisfy ∇zL(z∗, θ) = 0.

Proof: Taking the gradient of the Lagrangian Eq. (10)
with respect to each argument yields the following set of
equations:

∇λ0
L = ξ(θ)− x∗

0,

∇λk+1
L = f(x∗

k, u
∗
k, θ)− x∗

k+1,

∇xk
L = ℓxk

+ f⊤
xk
λk+1 − λk,

∇uk
L = ℓuk

+ f⊤
uk
λk+1,

∇xN
L = ϕx − λN ,

where functions are evaluated at the points x∗
k, u

∗
k, θ along

the solution τ ∗ and the abbreviated notation ℓxk
, fuk

, etc.

is used for gradients and partial derivatives. The first two
equations are equal to zero because a feasible solution satisfies
the initial condition and dynamics constraints of Problem 3.
The remaining equations, when set equal to zero, yield a
set of backward equations defining the optimal Lagrange
multipliers λ∗:

λ∗
k = ℓxk

+ f⊤
xk
λ∗
k+1, λ∗

N = ϕx,

0 = ℓuk
+ f⊤

uk
λ∗
k+1.

These facts together imply the statement of the proposition.
These conditions ∇zL(z∗, θ) = 0 are known as the KKT
conditions, and are equivalent to the discrete-time Pontryagin
maximum/minimum principle (PMP) (see, e.g., Appendix C
of Jin et al. [24]).

APPENDIX B
PROOF OF PROPOSITION 3

Proposition 3 (Implicit derivative of Problem 3). Let τ ∗ be a
solution to Problem 3 for fixed parameters θ. By Proposition 2,
Theorem 1 holds with F = ∇zL. Furthermore, the Jacobian
∂z∗

∂θ is given as

∂

∂θ
z∗(θ) = −L−1

zzLzθ.

Proof: Let Proposition 2 hold for z∗ = (τ ∗,λ∗). Further-
more, assume the Hessian Lzz evaluated at z∗ is nonsingular,
which can be ensured through, e.g., Levenberg–Marquardt
regularization [47]. Since ∇zL(z∗, θ) = 0, the gradient ∇zL
satisfies the conditions of Theorem 1, and the statement of the
proposition follows naturally.

APPENDIX C
PROOF OF COROLLARY 4

Corollary 4 (Pontryagin differentiable programming [24]).
Let the conditions of Proposition 2 and Proposition 3 hold.
Then, the differentiable Pontryagin conditions ((Eq. (13) of
Jin et al. [24]) are equivalent to solving the linear system
Eq. (6).

Proof: First, let us state the differentiable Pontryagin
conditions [24] in the notation of this paper:

∂x0

∂θ
= ξθ,

∂xk+1

∂θ
= fxk

∂xk

∂θ
+ fuk

∂uk

∂θ
+ fθk ,

∂λk

∂θ
= L(k)

xx

∂xk

∂θ
+ L(k)

xu

∂uk

∂θ
+ f⊤

xk

∂λk+1

∂θ
+ L(k)

xθ ,

0 = L(k)
ux

∂xk

∂θ
+ L(k)

uu

∂uk

∂θ
+ f⊤

uk

∂λk+1

∂θ
+ L(k)

uθ ,

∂λN

∂θ
= ϕxx

∂xN

∂θ
+ ϕxθ,

(11)

where all derivatives are evaluated along the solution z∗.
The notation L(k)

ux denotes the block of the Hessian of the
Lagrangian Eq. (10) corresponding to u∗

k, x
∗
k, see below.

Let us write explicitly the form of the Jacobian ∂z∗

∂θ =



(. . . , ∂λk

∂θ , ∂xk

∂θ , ∂uk

∂θ , ∂λk+1

∂θ , . . . , ∂λN

∂θ , ∂xN

∂θ ), the Hessian of the
Lagrangian

Lzz =



λk xk uk λk+1 xN

. . . −I λk

−I L(k)
xx L(k)

xu f⊤
xk

xk

L(k)
ux L(k)

uu f⊤
uk

uk

fxk
fuk

λk+1

. . . −I
−I ϕxx xN


, (12)

and the Hessian Lzθ = (ξθ, . . .L(k)
xθ ,L

(k)
uθ , fθk , . . . , ϕxθ). Ex-

panding the matrix multiplication Lzz
∂z∗

∂θ = −Lzθ yields

−∂x0

∂θ
= −ξθ,

−∂λk

∂θ
+ L(k)

xx

∂xk

∂θ
+ L(k)

xu

∂uk

∂θ
+ f⊤

xk

∂λk+1

∂θ
= −L(k)

xθ ,

L(k)
ux

∂xk

∂θ
+ L(k)

uu

∂uk

∂θ
+ f⊤

uk

∂λk+1

∂θ
= −L(k)

uθ ,

fxk

∂xk

∂θ
+ fuk

∂uk

∂θ
− ∂xk+1

∂θ
= −fθk ,

−∂λN

∂θ
+ ϕxx

∂xN

∂θ
= −ϕxθ,

which are equivalent to Eq. (11) above.

APPENDIX D
PROOF OF THEOREM 5

Theorem 5 (Differentiable Optimal Control). Let z denote
the augmented vector consisting of τ and λ. In addition, let
the conditions of Proposition 2 and Proposition 3 hold. Then,
the gradient of the loss L with respect to θ is given by

∇θL(z
∗(θ)) = Lθzδz,

where the vector δz is given by solving the linear system

Lzzδz = −∇zL.

Proof: Start by stating the expression for the gradient
∇θL and applying Proposition 3:

∇θL(z
∗(θ)) =

(
∂z∗(θ)

∂θ

)⊤

∇zL

= −LθzL−1
zz∇zL.

The last line shows this gradient can be computed either by
solving −L−1

zzLzθ (Corollary 4) or −L−1
zz∇zL. We adopt here

the second choice — call the solution δz = −L−1
zz∇zL,

equivalently Lzzδz = −∇zL. Substituting δz back into the
expression for the gradient completes the proof.

APPENDIX E
DERIVATION OF ALGORITHM 1

The derivation of Algorithm 1 is very similar to the
derivation of DDP [31, 23] — in fact, it is the same, the
only difference being the gradient that is considered. The
resultant algorithm consists of a backward pass and forward

pass procedure summarized by the equations in Algorithm 3
and Algorithm 4, with derivation below. Diacritic tildes (e.g.,
Q̃

(k)
x ) are used to emphasize quantities that are unique from

the usual DDP equations.

Algorithm 3: DOC Backward Pass
Input: Derivatives of L (equivalently f , ℓ, ϕ, and ξ)

and L along the solution z∗

Output: Derivatives and gains Ṽx,Vxx, k̃,K

1 Ṽ
(N)
x ← ∇xN

L; V
(N)
xx ← ϕxx;

2 for k = N − 1, . . . , 0 do
// Q derivatives

3 Q̃
(k)
x ← ∇xk

L+ f⊤
xk
Ṽ

(k+1)
x ;

4 Q̃
(k)
u ← ∇uk

L+ f⊤
uk
Ṽ

(k+1)
x ;

5 Q
(k)
xx ← L(k)

xx + f⊤
xk
V

(k+1)
xx fxk

;
6 Q

(k)
ux ← L(k)

ux + f⊤
uk
V

(k+1)
xx fxk

= (Q
(k)
xu )⊤;

7 Q
(k)
uu ← L(k)

uu + f⊤
uk
V

(k+1)
xx fuk

;
// Control gains

8 k̃(k) ← −
(
Q

(k)
uu

)−1
Q̃

(k)
u ;

9 K(k) ← −
(
Q

(k)
uu

)−1
Q

(k)
ux ;

// V derivatives

10 Ṽ
(k)
x ← Q̃

(k)
x +Q

(k)
xu k̃(k);

11 V
(k)
xx ← Q

(k)
xx +Q

(k)
xuK(k);

12 end

Algorithm 4: DOC Forward Pass
Input: Outputs from Algorithm 3 and parameter

derivatives ξθ, fθ, Lθx, Lθu, ϕθx

Output: Gradient of upper-level loss ∇θL
1 δx0 ← 0;
2 δλ0 ← Ṽ

(0)
x ;

3 ∇θL← ξ⊤θ δλ0;
4 for k = 0, . . . , N − 1 do
5 δuk ← k̃(k) +K(k)δxk;
6 δxk+1 ← fxk

δxk + fuk
δuk;

7 δλk+1 ← Ṽ
(k+1)
x + V

(k+1)
xx δxk+1;

// Accumulate gradient

8 ∇θL← ∇θL+ L(k)
θx δxk + L(k)

θu δuk + f⊤
θk
δλk+1;

9 end
10 ∇θL← ∇θL+ ϕθxδxN ;

The goal will be to derive an efficient algorithm for solving

Lzzδz = −∇zL,

as given in Theorem 5.
Using the block form of Lzz given in Eq. (12) and noting

that ∇zL = (0, . . . ,∇xk
L,∇uk

L, . . . ,∇xN
L), expanding the

matrix multiplication above yields the following system of



equations:

δx0 = 0, (13a)

δλk = ∇xk
L+ L(k)

xx δxk + L(k)
xu δuk + f⊤

xk
δλk+1, (13b)

0 = ∇uk
L+ L(k)

ux δxk + L(k)
uu δuk + f⊤

uk
δλk+1, (13c)

δxk+1 = fxk
δxk + fuk

δuk, (13d)
δλN = ϕxxδxN +∇xN

L. (13e)

Through an inductive argument, we will show δλk has the
form

δλk = Ṽ (k)
x + V (k)

xx δxk. (14)

Eq. (14) holds at time N by taking Ṽ
(N)
x = ∇xN

L and
V

(N)
xx = ϕxx. Next, assume Eq. (14) holds at time k + 1,

namely

δλk+1 = Ṽ (k+1)
x + V (k+1)

xx δxk+1

= Ṽ (k+1)
x + V (k+1)

xx fxk
δxk + V (k+1)

xx fuk
δuk,

where we have substituted in the linear dynamics Eq. (13d).
Substituting into Eq. (13c) yields

δuk = k̃(k) +K(k)δxk, (15)

where

k̃(k) := −
(
Q(k)

uu

)−1
Q̃(k)

u ,

K(k) := −
(
Q(k)

uu

)−1
Q(k)

ux ,

Q̃(k)
u := ∇uk

L+ f⊤
uk
Ṽ (k+1)
x ,

Q(k)
uu := L(k)

uu + f⊤
uk
V (k+1)
xx fuk

,

Q(k)
ux := L(k)

ux + f⊤
uk
V (k+1)
xx fxk

.

Finally, substituting δuk and δλk+1 into Eq. (13b) yields

δλk = Ṽ (k)
x + V (k)

xx δxk,

with

Ṽ (k)
x := Q̃(k)

x +Q(k)
xu k̃

(k),

V (k)
xx := Q(k)

xx +Q(k)
xuK

(k),

Q̃(k)
x := ∇xk

L+ f⊤
xk
Ṽ (k+1)
x ,

Q(k)
xx := L(k)

xx + f⊤
xk
V (k+1)
xx fxk

,

Q(k)
xu := L(k)

xu + f⊤
xk
V (k+1)
xx fuk

= (Q(k)
ux )

⊤,

which proves Eq. (14) holds at time k. By induction, it holds
for all k = N,N − 1, . . . , 0. This motivates the backward-
forward nature of Algorithm 1, as the Q and V derivatives can
be computed backwards-in-time, then the solution δz is given
by forward application of Eq. (15), Eq. (13d), and Eq. (14).

Finally, the computation of the gradient ∇θL is given as

∇θL = Lθzδz.

Multiplication of Lθz with

δz = (δλ0, . . . , δxk, δuk, δλk+1, . . . , δxN )

yields the sum

∇θL = ξ⊤θ δλ0 + . . .

+ L(k)
θx δxk + L(k)

θu δuk + f⊤
θk
δλk+1 + . . .

+ ϕθxδxN ,

which shows how the gradient can be accumulated during the
forward pass of Algorithm 1.

APPENDIX F
PROOF OF COROLLARY 6

Corollary 6 (Diff-MPC [5]). Diff-MPC is equivalent to using
a Gauss-Newton approximation when solving Eq. (8).

Proof: Diff-MPC was originally derived by Amos et al.
[5] starting with iLQR and then implicitly differentiating with
respect to the iLQR parameters Ak, Bk, Qk, Rk, etc., using
matrix calculus. We present an alternative derivation that gen-
eralizes [5] to consider arbitrary dynamics and cost parameters
through applying Algorithm 1 using a Gauss-Newton approx-
imation of the Hessian — this approximation is advantageous
computationally as it only requires first-order dynamics deriva-
tives. Furthermore, adopting the Gauss-Newton approximation
is equivalent to the iLQR algorithm [21].

Adopting the notation of this work, the Diff-MPC equations
are given by solving the system

Kδz = −∇zL,

with the KKT matrix K given by

K =



λk xk uk λk+1 xN

. . . −I λk

−I ℓ
(k)
xx ℓ

(k)
xu f⊤

xk
xk

ℓ
(k)
ux ℓ

(k)
uu f⊤

uk
uk

fxk
fuk

λk+1

. . . −I
−I ϕxx xN


,

This matrix should look familiar to the form of Lzz given
in Eq. (12). Consider the second-order derivatives of the
Lagrangian that are necessary when applying Algorithm 1 to
invert Lzz:

L(k)
xx = ℓ(k)xx + λk+1 ⊗ f (k)

xx ,

L(k)
ux = ℓ(k)ux + λk+1 ⊗ f (k)

ux ,

L(k)
uu = ℓ(k)uu + λk+1 ⊗ f (k)

uu ,

with the ⊗ operator representing tensor contraction. Dropping
the final term of each equation (and thus avoiding their
expensive computation) corresponds to a Gauss-Newton ap-
proximation of the Hessian, and we have that Lzz = K.
Note that, importantly, this approximation does not change
the structure of the algorithm itself. This shows that Diff-MPC
can be derived through our framework by applying a Gauss-
Newton Hessian approximation in Algorithm 1.



APPENDIX G
THEOREM 7 — JACOBIAN ESTIMATE ERROR

We start by defining some necessary quantities for comput-
ing the Jacobian ∂z

∂θ using Proposition 3. To avoid excessive
fraction notation, we abbreviate ∂z := ∂z

∂θ and similarly
∂xk := ∂xk

∂θ and ∂uk := ∂uk

∂θ . As shown in Corollary 4,
computing ∂z amounts to solving the system of equations
Eq. (11). This system has the solution:

∂uk = −(Q(k)
uu )

−1Q
(k)
uθ − (Q(k)

uu )
−1Q(k)

ux ∂xk,

∂xk+1 = fxk
∂xk + fuk

∂uk + fθk ,

with initial condition ∂x0 = ξθ. The matrix-valued functions
Q

(k)
uu and Q

(k)
ux are defined the same as in the derivation of

Algorithm 1 presented in Appendix E. Q(k)
uθ is defined by

Q
(k)
uθ := L(k)

uθ + f⊤
uk
V

(k+1)
xθ + f⊤

uk
V (k+1)
xx fθk ,

Q
(k)
xθ := L(k)

xθ + f⊤
xk
V

(k+1)
xθ + f⊤

xk
V (k+1)
xx fθk ,

V
(k)
xθ := Q

(k)
xθ −Q(k)

xu (Q
(k)
uu )

−1Q
(k)
uθ .

where V
(k)
xθ is solved backwards-in-time (much like the

value function gradient V (k)
x and Hessian V

(k)
xx ) starting with

V
(N)
xθ = ϕxθ.
In the following results, we drop the dependence of Quu,

Qux, etc. on time k for notational compactness. The norm
of a matrix ∥A∥ is the operator norm unless otherwise spec-
ified. Let A : Rn → Rm×p be any matrix-valued function.
β-boundedness of A implies ∥A(x)∥ ≤ β. Likewise, L-
Lipschitzness of A implies ∥A(y)−A(x)∥ ≤ L ∥y − x∥.

Next, let us state formally the necessary assumptions of
Theorem 7. We use Greek letters for boundedness constants
and capital Roman letters for Lipschitz constants. All of the
following mathematical objects are functions defined in a
neighborhood of the optimal trajectory z∗.

Assumption 8. The following conditions are assumed to hold
for all z with ∥z − z∗∥ ≤ ϵ:

1) Quu is K-Lipschitz in (xt, ut) and well-conditioned:
∥Quuv∥ ≥ α ∥v∥ for all v ∈ Rnu . This implies Q−1

uu

exists and
∥∥Q−1

uu

∥∥ ≤ 1
α .

2) Qux is L-Lipschitz and β-bounded.
3) Quθ is M -Lipschitz and γ-bounded.
4) fx is A-Lipschitz and ζ-bounded.
5) fu is B-Lipschitz and η-bounded.
6) fθ is N -Lipschitz and σ-bounded.
7) ξθ is ρ-bounded.

Now we will present the main theorem, which shows that
the Jacobian estimate errors are bounded as a function of the
trajectory error to the optimal solution.

Theorem 7 (Jacobian estimate error). Let the conditions of
Assumption 8 hold. Then, the error in using Proposition 3
to compute the implicit derivatives of the control problem is

upper bounded by

∥∂ûk − ∂u∗
k∥ ≤

k∑
t=0

Ck,t ∥τ̂t − τ∗t ∥ ,

∥∥∂x̂k+1 − ∂x∗
k+1

∥∥ ≤ k∑
t=0

Dk+1,t ∥τ̂t − τ∗t ∥ ,

where τt = (xt, ut) is the state-control pair at time t. The
constants Ck,t, Dk,t > 0 are specific to the time step k that
the Jacobian errors are evaluated at, and are time-varying for
t = 0, 1, . . . , k.

Before proving the full theorem, we begin by proving the
following result which shows the Jacobians ∂uk and ∂xk

remain bounded for all time.

Lemma 9 (Boundedness of Jacobians). Let the conditions of
Assumption 8 hold. For all time steps k = 0, . . . , N − 1, the
norm of the Jacobians ∂uk and ∂xk are bounded:

∥∂uk∥ ≤ µk, ∥∂xk+1∥ ≤ νk+1,

for µk = (γ+βνk)/α and νk+1 = ζνk+ηµk+σ with ν0 = ρ.
Proof: Starting with the base case k = 0, we have

∂x0 = ξθ so ∥∂x0∥ = ∥ξθ∥ ≤ ρ =: ν0. Next, for
k ≥ 0 assume that ∥∂xk∥ ≤ νk. We have that ∥∂uk∥ ≤
∥Q−1

uu∥∥Quθ∥ + ∥Q−1
uu∥∥Qux∥∥∂xk∥ ≤ (γ + βνk)/α =: µk.

Finally, ∥∂xk+1∥ ≤ ∥fx∥∥∂xk∥ + ∥fu∥∥∂uk∥ + ∥fθ∥ ≤
ζνk + ηµk + σ =: νk+1 and the result holds by recursion.

Proof of Theorem 7: To start, let us consider the base
case with k = 0. Note that ∂x̂0 − ∂x∗

0 = ξθ − ξθ = 0 since
the initial condition function ξ(θ) has no dependence on x0.
Therefore, we have ∥∂x̂0 − ∂x∗

0∥ = 0 ≤ D0,0∥τ̂0 − τ∗0 ∥ for
any D0,0 ≥ 0, so take D0,0 = 0 trivially.

Next, we analyze the control Jacobian error at time k ≥ 0.
It is assumed that the state Jacobian error for time k can be
bounded in the form ∥∂x̂k − ∂x∗

k∥ ≤
∑k−1

t=0 Dk,t∥τ̂t − τ∗t ∥
according to the inductive hypothesis.

For notational convenience “hat” quantities such as Q̂uu are
assumed to be evaluated at (x̂k, ûk) while “non-hat” quantities
such as Qux are evaluated instead at the optimal state-control
pair (x∗

k, u
∗
k). The general form of ∂ûk − ∂u∗

k can therefore
be written as

∂ûk − ∂u∗
k = − Q̂−1

uu Q̂uθ − Q̂−1
uu Q̂ux∂x̂k

+Q−1
uuQuθ +Q−1

uuQux∂x
∗
k

= Q̂−1
uu

(
(Quθ − Q̂uθ) + Q̂ux(∂x

∗
k − ∂x̂k) + (Qux − Q̂ux)∂x

∗
k

)
+ (Q−1

uu − Q̂−1
uu )(Quθ +Qux∂x

∗
k),

where we have used repeatedly the fact that AB − CD =
A(B −D) + (A−C)D. The norm of this approximation can



be upper-bounded by

∥∂ûk − ∂u∗
k∥ ≤ ∥Q̂−1

uu∥
(
∥Quθ − Q̂uθ∥+ ∥Q̂ux∥∥∂x∗

k − ∂x̂k∥
+ ∥Qux − Q̂ux∥∥∂x∗

k∥
)

+ ∥Q−1
uu − Q̂−1

uu∥
(
∥Quθ∥+ ∥Qux∥∥∂x∗

k∥
)

= ∥Q̂−1
uu∥

(
∥Quθ − Q̂uθ∥+ ∥Q̂ux∥∥∂x∗

k − ∂x̂k∥
+ ∥Qux − Q̂ux∥∥∂x∗

k∥
)

+ ∥Q−1
uu∥∥Q̂uu −Quu∥∥Q̂−1

uu∥
(
∥Quθ∥+ ∥Qux∥∥∂x∗

k∥
)
,

where we have used the fact that ∥A−1−B−1∥ = ∥A−1∥∥B−
A∥∥B−1∥. Using Assumption 8 and Lemma 9, this yields the
following upper bound:

∥∂ûk − ∂u∗
k∥ ≤ (

M

α
+

νkL

α
+

K(γ + βνk)

α2
)︸ ︷︷ ︸

=:Ck,k

∥τ̂k − τ∗k∥

+
β

α
∥∂x̂k − ∂x∗

k∥

≤ Ck,k∥τ̂k − τ∗k∥+
k−1∑
t=0

β

α
Dk,t︸ ︷︷ ︸

:=Ck,t

∥τ̂t − τ∗t ∥ =
k∑

t=0

Ck,t ∥τ̂t − τ∗t ∥ .

This shows the control Jacobian error is on the same order as
the error with the optimal trajectory.

Next, let us analyze the state Jacobian error at time k ≥ 0.
The general form of ∂x̂k+1 − ∂x∗

k+1 can be expresed as

∂x̂k+1 − ∂x∗
k+1 = f̂x∂x̂k + f̂u∂ûk + f̂θ

− fx∂x
∗
k − fu∂u

∗
k − fθ,

which by similar arguments is bounded in norm by

∥∂x̂k+1 − ∂x∗
k+1∥ ≤ ∥f̂x∥∥∂x̂k − ∂x∗

k∥+ ∥f̂x − fx∥∥∂x∗
k∥

+ ∥f̂u∥∥∂ûk − ∂u∗
k∥+ ∥f̂u − fu∥∥∂u∗

k∥
+ ∥f̂θ − fθ∥.

Under Assumption 8 and Lemma 9, we therefore have

∥∂x̂k+1 − ∂x∗
k+1∥ ≤ ζ∥∂x̂k − ∂x∗

k∥+ νkA∥τ̂k − τ∗k∥
+ η∥∂ûk − ∂u∗

k∥+ µkB∥τ̂k − τ∗k∥
+N∥τ̂k − τ∗k∥

≤ ζ

k−1∑
t=0

Dk,t∥τ̂t − τ∗t ∥+ η

k∑
t=0

Ck,t∥τ̂t − τ∗t ∥

+ (νkA+ µkB +N)∥τ̂k − τ∗k∥

≤
k−1∑
t=0

(ζDk,t + ηCk,t)︸ ︷︷ ︸
:=Dk+1,t

∥τ̂t − τ∗t ∥

+ (νkA+ µkB +N + ηCk,k)︸ ︷︷ ︸
Dk+1,k

∥τ̂k − τ∗k∥

=⇒ ∥∂x̂k+1 − ∂x∗
k+1∥ ≤

k∑
t=0

Dk+1,t∥τ̂t − τ∗t ∥.

This completes the proof of Theorem 7.

APPENDIX H
INCORPORATING CONTROL CONSTRAINTS

Algorithm 1 can be straightforwardly extended to incorpo-
rate control constraints. The most common case is that of box
control limits u ≤ uk ≤ u, which can be expressed as the
general linear inequality constraint

Guk − µ ≤ 0,

with G =

[
−I
I

]
and µ =

[
u
−u

]
.

Since Algorithm 1 is applied at a solution z∗, the control
trajectory itself is fixed. Therefore, the control constraints
can be partitioned into an active set and an inactive set
(active meaning the equality holds). Let the active inequality
constraints be given by G̃uk − µ̃ = 0. This is equivalent to
the condition δu

(i)
k = 0 if u

(i)
k ∈ {u, u} [5], and is easily

incorporated into the forward pass (Algorithm 4).
General control inequality constraints of the form g(uk) ≤ 0

for g differentiable can be handled similarly. This imposes the
constraint ∂g̃

∂uδuk = 0 with g̃ the active constraints, which can
be seen by adding the control constraint to the Lagrangian and
rederiving Algorithm 1. In words, this condition restricts δuk

to the null space of the Jacobian ∂g̃
∂u , and can be incorporated

into Algorithm 1 by reparameterizing the solution in terms of
the QR decomposition of ∂g̃

∂u along the trajectory [22].

APPENDIX I
GRADIENT ERROR AND TIMING COMPARISONS

This supplementary section presents numerical comparisons
between the proposed approach Algorithm 1 and the state-of-
the-art works of Amos et al. [5], Dinev et al. [17], and Jin
et al. [24]. All algorithms are implemented in JAX [12] and
run on a Mac M1 processor.

As described in Section III-C, the numerical precision of
our approach is verified empirically on the Dubins vehicle,
quadrotor, and robot arm systems. The Jacobian estimate
error

∥∥∥J(ẑ, θ)− ∂z∗

∂θ

∥∥∥ is plotted as a function of the iterate
error ∥ẑ − z∗∥ by running DDP and DOC on nominal tra-
jectory optimization examples. We compare with the implicit
derivative returned by Diff-MPC from [5] (equivalent to our
Gauss-Newton approximation) and an unrolled Jacobian that
is computed by directly unrolling iterations of DDP through
autodifferentiation. These results are presented in Figs. 9a, 10a
and 11a for the three systems, respectively.

Additionally, the average time in milliseconds over 100
iterations of each algorithm is presented below in Figs. 9b, 10b
and 11b, followed by a breakdown showing which components
of the algorithm contribute the most time (Figs. 9c, 10c
and 11c).



(a) Jacobian estimate error.

(b) Timing comparison. Note the log scale on the y-axis.

(c) Timing breakdown. iLQR timings are shown for reference.

Fig. 9: Dubins vehicle numerical comparisons.

(a) Jacobian estimate error (repeated from Fig. 3 for reference).

(b) Timing comparison. Note the log scale on the y-axis.

(c) Timing breakdown. iLQR timings are shown for reference.

Fig. 10: Quadrotor numerical comparisons.



(a) Jacobian estimate error.

(b) Timing comparison. Note the log scale on the y-axis.

(c) Timing breakdown. iLQR timings are shown for reference.

Fig. 11: Robot arm numerical comparisons.

As Diff-MPC [5] uses an LQ approximation to the control
problem, their algorithm is able to achieve very fast timings.
However, this results in inaccurate gradients, which is reflected
in the high Jacobian estimate error compared to the proposed
DOC algorithm. Note that in Fig. 11a, the Diff-MPC and DOC
Jacobian errors align — this is due to modeling the underlying
dynamics of the system as a 6-dimensional double integrator
system. This is a linear system, and therefore, the second-
order dynamics derivatives are zero — the nonlinearities in
this system appear in the cost function design.

We highlight the fact that our algorithm is faster, as well as
more memory efficient, compared to the work of Dinev et al.
[17] due to the smart accumulation of the gradient during the
forward pass of Algorithm 1. This prevents needing to store
intermediate vectors δxt, etc. The PDP algorithm of Jin et al.
[24] produces accurate gradients, but is slower than the other
methods due to needing to solve a matrix control system.

Since the MuJoCo dynamics are not compatible with au-
todiff, comparisons on those systems are omitted. However,
we provide a timing comparison between NT-MPC and the
proposed DT-MPC on these two systems in Fig. 12. Our

proposed method is comparable in runtime with the baseline
while vastly improving task performance and safety.

(a) Cheetah system. (b) Quadruped system.

Fig. 12: Timing comparison on MuJoCo systems. Values are
normalized with the NT-MPC time corresponding to a value
of 1 to show the relative speedup/slowdown of our approach.

APPENDIX J
FURTHER EXPERIMENTAL DETAIL

This section provides supplementary detail for the exper-
iments performed in Section V. In particular, we define the
varying parameterizations of each controller (i.e., what is
allowed to adapt during MPC) to highlight the generality of
the proposed method.

For both the nominal and ancillary controllers, we use
DBaS-DDP [3] and the control-limited DDP solver for han-
dling box control limits [46], dropping the second-order dy-
namics terms (equivalent to the iLQR approximation). For all
experiments, we use the (relaxed) inverse barrier. Additionally,
we consider a “computational budget” of 10 iterations. This
means NT-MPC can optimize both controllers for the full
10 iterations. However, our method optimizes the lower-level
controllers for 9 iterations and uses the last to calculate the
parameter gradients as long as either controller converged.
Convergence in this sense is declared if the cost does not
improve between iterations more than 1e−3.

Of particular note is the choice of learning rate in Algo-
rithm 2. We find that learning rates smaller than η = 1e−3
tend to suffer in both task completion as well as obstacle
avoidance. On the other hand, we have found that a relatively
large learning rate of η = 1e−2 enables fast response to
disturbances, especially as the system approaches an obstacle.
To improve the efficiency of the method, we adopt a Nesterov
momentum scheme [35], but it should be noted that vanilla
gradient descent works well in practice.

For all experiments, the nominal controller has a cost
function dependent on the task being solved, while the an-
cillary controller has the general form ℓ = ∥xk − x̄k∥2Q +

∥uk − ūk∥2R + qbb
2
k and ϕ = ∥xN − x̄N∥2Q + qbb

2
N , with

weights generally initialized to all ones. To avoid invalid con-
trol solutions (i.e., for DDP R must be positive definite), we
constrain the parameters (when applicable) through projected
gradient descent to ensure: Qii ≥ 0, Rii ≥ 1e−4, qb ∈ [0, 1],
γ ∈ [−1, 1], and α ≥ 0.



A. Dubins Vehicle

The Dubins vehicle is a nonlinear system with three states
(xy position and yaw angle θ) and two controls (linear velocity
v and angular velocity ω). The controls are constrained such
that |v| ≤ 10m s−1 and |ω| ≤ π rad s−1. The dynamics
are discretized with a time step of ∆t = 0.01. The controller
horizon is N = 50 corresponding to a planning horizon of
0.5 s long. The task is run for H = 300 time steps, or until
success or failure occurs. Success in Table I is defined as
arriving within a 0.25m circle of the target, while failure is
defined as colliding with an obstacle.

The nominal cost is fixed and given by ℓ̄ =
∥xk − xtarget∥2Q̄ + ∥uk∥2R̄ + q̄bb

2
k and ϕ̄ = ∥xN − xtarget∥2Q̄f

+

q̄bb
2
N , where xtarget = (10, 10, π/4), Q̄ = diag(1, 1, 0),

R̄ = diag(1, 1), Q̄f = diag(1000, 1000, 1000), q̄b = 1. The
ancillary cost is initialized to all ones and allowed to adapt
through minimization of Eq. (9). For this experiment, we use
the inverse barrier (relaxed inverse barrier with α = 0) and
fix γ = 0.

B. Quadrotor

The obstacle field in Fig. 2 is generated as follows. 30
spherical obstacles are created by sampling a center point from
the range [0, 10] m in all three axes and a radius from the
range [0.5, 1.5] m. An additional obstacle with radius 1.5m is
placed at the center point (5, 5, 5) m between the origin and
the target to avoid trivial solutions.

Success for this task is defined as arriving within a 0.5m
sphere of the target, while failure is defined as colliding with
an obstacle or leaving the bounds [−2, 12] m in any of the
three axes.

The dynamics model is adapted from Sabatino [44] and
contains 12 states — xyz position, orientation expressed as
Euler angles, and linear and angular velocities — and four
controls — thrust magnitude and pitching moments. For
simplicity, unity parameters (1 kg mass, identity inertia matrix,
etc.) are adopted. The thrust is limited to the range [0, 50] N
and the pitching moments to [−10, 10] Nm. The dynamics are
discretized with ∆t = 0.02 and the MPC horizon is N = 50
for both controllers corresponding to a 1 s planning horizon.
The task is run for H = 300 time steps, or until success or
failure occurs.

Similar to the Dubins vehicle experiment, the nominal cost
is fixed and given by ℓ̄ = ∥xk − xtarget∥2Q̄+ ∥uk∥2R̄+ q̄bb

2
k and

ϕ̄ = ∥xN − xtarget∥2Q̄f
+ q̄bb

2
N , where Q̄ = diag(ones(12)),

R̄ = diag(ones(4)), Q̄f = 1000∗diag(ones(12)), and q̄b = 1.
The target state is xtarget = (10, 10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0).
The ancillary cost is initialized to all ones and adapted online
through minimization of Eq. (9). The inverse barrier (relaxed
inverse barrier with α = 0) is used and γ = 0 is fixed.

C. Robot Arm

This system has 12 states corresponding to the orientation
θ (pitch and yaw angles) and angular velocities θ̇ of each of
the sections of the arm, and six controls corresponding to the

torques θ̈ applied at each joint. The torques are limited to
|θ̈| ≤ 10 Nm. The three links of the arm have lengths 1m,
1.5m, and 1m, respectively. The obstacles visualized in Fig. 5
are fixed with centers (1, 0), (1, 1.5), (1,−1.5), (2,−2), and
(2, 2) m, each with radius 0.5m — a 0.5m gap exists on
either side of the central obstacle that the arm can safely pass
through. At the start of each trial, the arm begins in a random
feasible starting orientation which is generated by sampling
angles from the range [−π, π] rad and rejecting configurations
with the arm below the xy-plane or conflicting with obstacles.

The dynamics are discretized with a time step of ∆t = 0.02,
and the MPC time horizon for both controllers is 50 time steps,
corresponding to a 1 s planning horizon. The task is run for at
most H = 400 time steps, or until success (the end effector
enters a 0.25m sphere of the target location) or failure (any
link of the arm collides with an obstacle or the arm goes below
the xy-plane) occurs.

The nominal cost function here is reparameterized in terms
of the end effector position ek. The running cost is given as
ℓ̄ = ∥ek − etarget∥2Q̄ + ∥uk∥2R̄ + q̄bb

2
k and the terminal cost

ϕ̄ = ∥eN − etarget∥2Q̄f
+ q̄bb

2
N , with Q̄ = 100 ∗ diag(ones(3)),

R̄ = 100 ∗ diag(ones(6)), Q̄f = 10000 ∗ diag(ones(3)), q̄b =
1e−3, and etarget = (2, 0, 1). The ancillary cost is the same as
described previously and initialized to all ones, except for the
barrier weight which is initialized as qb = 1e−3.

D. Cheetah

The cheetah system has 18 states and 6 controls with
∆t = 0.01 and control limits ui ∈ [−1, 1]. The controller plans
for N = 50 time steps with an allotted task time of H = 300.
The nominal cost is given as ℓ̄ = q̄(p

(k)
x −5)2+∥uk∥2R̄+ q̄bb

2
k

and ϕ̄ = q̄f (p
(N)
x − 5)2 + q̄bb

2
N , where p

(k)
x is the x-position

at time k, and q̄ = 1, R̄ = 0.01 ∗ diag(ones(6)), q̄f = 100,
and qb = 1. Notably, we fix the terminal cost but allow the
remaining parameters to adapt online during MPC — this
allows the DT-MPC to improve the task completion percentage
without sacrificing safety. The ancillary controller is initialized
to all ones. Additionally, we use the relaxed barrier with
initialization γ = 0, α = 0.1 and allow the parameters to adapt
along with the cost function weights. The use of the relaxed
barrier here is beneficial as small violations of the pitch angle
constraint are acceptable as long as the cheetah does not flip
over. As stated in the main text, the loss for both controllers
is L = ∥p∗

x − p̄x∥22 + ∥b∗∥
2
2, motivating safe task completion.

E. Quadruped

The quadruped system is a complex robotic system with
56 states and 12 controls. Each leg is a simplified biological
model with an extending/contracting tendon. The controls for
each leg consist of the yaw angle, lift, and extension of the
leg. The dynamics are discretized with ∆t = 0.005 and the
MPC horizon is N = 50. The task is run for H = 400 time
steps.

The nominal cost is similar to the cheetah experiment, with
ℓ̄ = q̄(p

(k)
x − 2.5)2 + ∥uk∥2R̄ + q̄bb

2
k and ϕ̄ = q̄f (p

(N)
x −

2.5)2 + q̄bb
2
N , and the weights given as q̄ = 1, R̄ =



0.01 ∗ diag(ones(6)), q̄f = 100, and qb = 1. The ancillary
cost is initialized to all ones, except the barrier weight which
is initialized to qb = 0.1. The relaxed inverse barrier is
adopted here with initial parameters γ = 0, α = 1.0, and
both controllers minimize the loss L = ∥p∗

x − p̄x∥22 + ∥b∗∥
2
2

for adaptation.

F. Hardware Experiment - Robotarium

For the Robotarium experiment, we adopt the same Dubins
vehicle model as used previously for planning and initialize
five antagonistic agents who slowly move forwards with
random velocity. The dynamics is discretized with ∆t = 0.033
and the MPC horizon is N = 50 for an overall planning time
of 1.65 s into the future. State constraints are added to ensure
the robot stays within the desired operating region (dashed
lines of Fig. 8) and avoids the other agents. The controller
must run under 33ms or at a rate of about 30Hz in order for
the control to be fast enough for real-time. To ensure this, we
take advantage of the compilability of JAX [12].

For DT-MPC, the nominal parameters are fixed while the
ancillary parameters are allowed to adapt. The loss function
is chosen as L = ∥p∗

x − p̄x∥22 +
∥∥p∗

y − p̄y

∥∥2
2
+ ∥b∗∥22. This

choice is due to the fact that the orientation of the robot relative
to the nominal trajectory is not very informative for reaching
the target. Similar to the cheetah and quadruped examples, we
have observed that when the orientation is included in the loss,
the DT-MPC controller defaults to a safe control but does not
reach the target.
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