Robotics: Science and Systems 2024
Delft, Netherlands, July 15-July 19, 2024

Experience-based Multi-Agent Path Finding with Narrow Corridors

Rachel A. Moan, Courtney McBeth, Marco Morales, Nancy M. Amato, Kris Hauser
University of Illinois at Urbana-Champaign
Champaign, Illinois, USA

{rmoar12, cmcbeth?2, moralesa, namato, kkhauser}@illinois.edu

Abstract—Maulti-agent path finding is a computationally chal-
lenging problem that is relevant to many areas in robotics.
Experience-based planning methods have been shown to signifi-
cantly reduce the planning time of this problem, but the type of
problem in which experience can be used has so far been limited
to warehouse-like environments with ample open space. We
present an experience-based multi-agent path finding algorithm
that specifically addresses narrow corridors of width 1 (also
known as doorways). This expands the domain of experience-
based problems to include environments such as most houses,
office spaces, retail spaces, and hospitals. We also present novel
techniques for conflict resolution strategies that result in up to
a 94% decrease in waiting steps per robot and final paths closer
to the optimal decoupled path by up to 71% than the strategies
used in current experience-based methods. We demonstrate our
planner solving problems with hundreds of robots in congested
environments in seconds, finding solutions in an allotted time
more often than existing state of the art optimal methods.

[. INTRODUCTION

Multi-agent path finding (MAPF) is a well-studied com-
putational problem with applications to warehouse robots,
factory automation, railway and roadway traffic management,
and manipulation of multiple objects [1]]-[4]. This problem
is commonly formulated with agents moving in a grid and
the objective is to find a trajectory for each agent to reach a
designated goal. Although in the worst case the problem is
NP-hard even to obtain approximately optimal solutions [5]],
in practice there are efficient heuristics that can solve MAPF
problems of large size [[6]. Decoupled planning methods can
solve large MAPF problems that are relatively unconstrained,
but are generally not complete [7|]. Conflict-based search
(CBS) methods are another popular class of methods that
are complete and can often drastically outperform coupled
search algorithms, which operate within the joint space of
all agents, by judiciously exploring alternatives only when
conflicts arise [8]. However, in congested scenarios, CBS
methods can still become mired in exhaustive search causing
computation time to explode.

A common strategy to address challenging scenarios is
to identify subproblem structures, such as highways [9] or
corridors [10] and address them using specialized strategies.
Recently, there has been growing interest in the general
approach of using experience to speed up planning using a
database of stored solutions to prior planning problems [11],
[12]. For MAPF, optimal solutions to especially congested
subproblems could be cached offline and reused when such
subproblems are encountered online, greatly speeding up the
most challenging portions of planning. A recent example is the

-;# H e

(a) Decoupled paths (b) State at time

t=3
——

(c) State at time t =7 (d) Final state at time t = 9

Fig. 1: Our planner solves for three robots navigating in an environment with
a doorway. The starts of the robots are drawn as solid circles and current
positions are drawn as empty circles. Every robot has a decoupled path
that they follow until a conflict occurs. (a) The robots’ originally planned
decoupled paths. (b) The robots advance along their paths. The light blue
robot has already reached its final goal. (c) The dark blue and brown robots
move around each other to avoid a conflict in the doorway. Conflict is avoided
by having brown move down for a time step to get out of blue’s way. This
solution is given by a 5x2 doorway subproblem in our database.

DDM planner [11]], which uses an exhaustive database of 2 x 3
or 3 x 3 obstacle-free subproblems to greatly accelerate plan-
ning in problems with hundreds of agents. A major limitation
of DDM, however, is that it assumes that the environment
possesses a “low-resolution” structure in which there exist
corridors of width 2 everywhere, which allow robots to pass
by one another without encountering local deadlock. This
prohibits environments with congestion in narrow corridors
or doorways, and hence severely limits the applicability of the
DDM approach to common real-world floorplans.

In this paper, we extend experience-based MAPF to a
broader domain of environments that contain doorways or
corridors of width 1 (Fig. [I). This domain excludes corridors
of width 1 that branch within the corridor, but it does cover
most environments designed for humans such as homes, office
buildings, hospitals, and airports. Narrow corridors are bot-
tlenecks for traditional MAPF algorithms and our algorithm
exhibits major speedups by caching an exhaustive set of
solutions to corridor-navigation subproblems. Our proposed
planner is a variant of DDM that stores a library of subproblem
templates that can be instantiated to solve conflicts that arise
along agents’ desired paths. In particular, we use 2 x 3 free
space, 3 x 3 free space, and 5 x 2 doorway subproblem

templates (see Fig [2) to cover the doorway problem domain.
Our contributions include:

o A framework for experience-based MAPF that accom-
modates multiple subproblem types including obstacle
layouts.

o The 5 x 2 subproblem template, which we use to resolve
conflicts in doorways via querying a database of ex-
haustive solutions. We introduce a notion of subproblem
capacity constraints in the experience-based framework
to handle doorways, which are limited to 6 robots total.

o Conflict resolution strategies that result in fewer waiting
steps per robot and final paths closer to the optimal de-
coupled path than the strategies presented in DDM [[11]].

We evaluate our planner on many benchmark problems,
demonstrating that it can scale to hundreds of agents and
dozens of doorways. Moreover, we demonstrate that the
conflict resolution strategies we present outperform DDM in
congested environments even in the absence of doorways.

II. RELATED WORK
A. Multi-robot Path Planning

Multi-robot path planning consists of finding valid,
collision-free paths for a set of robots over a graph. Several
prior works have proposed hybrid methods that initially plan
decoupled paths for each robot and then reconcile inter-robot
collisions.

Conflict-based Search (CBS) [8] performs a low-level de-
coupled search to find optimal paths for each individual
robot. Inter-robot conflicts are resolved by searching over a
constraint tree where each node represents a set of constraints
on the motions of each robot based on the observed conflicts.
Although CBS can find optimal paths, its performance is
highly dependent on the number of conflicts it encounters.
Several extensions to CBS have been proposed to improve its
performance in scenarios that feature frequent conflicts while
maintaining various levels of optimality guarantees [13], [14].

Prioritized planning algorithms such as Priority-based
Search (PBS) [15] assign a priority value to each robot and
plan a decoupled path for each robot that does not collide with
the already-planned paths for the higher-priority robots. Rather
than establishing a fixed priority ordering over all robots, PBS
explores the set of permutations of priority orderings to find
near-optimal paths.

M* [16] is an A*-like [17] search method that only con-
siders the joint planning space of a group of robots if their
optimal individual paths have been shown to interact. Its
strategy of subdimensional expansion allows for the dynamic
generation of low dimensional search spaces embedded in the
full composite space that are only expanded when necessary.

Expanding A* (X*) [18] is an anytime MAPF algorithm
that first plans decoupled paths for each robot and then
resolves conflicts by replanning within a local repair window,
reducing replanning effort. Over time, the size of the window
is expanded, allowing higher quality solutions to be found. In
the limit of time, X* finds optimal paths.

Although these methods perform well in uncongested en-
vironments, they struggle in scenarios where conflicts arise
frequently. This includes environments with narrow passages
and problems with high robot-vertex ratios.

B. Experience-based Planning

In the field of motion planning, which considers find-
ing a path for a robot in a continuous state space, prior
work has explored relying on experience to generate paths.
Lightning [19], for example, builds a path library that stores
entire paths between different starts and goals under various
environment configurations. For each new single-robot query,
the library is searched to find a path for a similar previous
query, which is then fitted into the current environment.
Thunder [20]], in contrast to Lightning, aggregates experiences
into a sparse roadmap graph, reducing memory usage and
query time. Chamzas et al. [21]] propose SPARK and FLAME,
two variants of an experience-based approach to learning sam-
pling distributions for sampling-based motion planning. These
use workspace decompositions at different levels of fidelity
to associate local sampling distributions with environment
features.

Recent work has explored using deep learning for motion
planning, a different form of experience-based guidance. For
example, the Motion Planning Networks (MPNet) [22] ap-
proach involves two deep networks, one that encodes an envi-
ronment representation and a planning network that generates
the path waypoints. The planning network can be trained using
output from another planner or expert demonstrations.

In the multi-robot path planning domain, the Diversified-
path Database-driven Multi-robot path planning (DDM) [11]
algorithm uses an exhaustive database of solutions for two
local graph subproblems to accelerate conflict resolution. It
considers subproblems in the form of a 2 x 3 and 3 x 3
subgraph. When conflicts arise between individual robot paths,
the database is queried to find an appropriate conflict-free path
segment, which is then placed into the affected robots’ paths.
DDM shows significant speedups over other state of the art
methods without sacrificing much optimality. However, DDM
assumes that there are no narrow (width 1) corridors in the
environment. Building off of DDM, the Database-accelerated
Enhanced Conflict-based Search (DCBS) algorithm [[12] uses
the database conflict resolution heuristic to resolve all 2x 3 and
3 x 3 subproblems, reducing the size of the constraint tree it
searches. However, in severe congestion DCBS will still create
an intractably large constraint tree. Our approach also extends
DDM but proposes an expanded set of subproblems intended
to capture conflicts in non-branching narrow corridors, and is
guaranteed to run in polynomial time.

III. METHOD

Our planner, which we refer to as EMP (Experience-based
Multi-agent Path finding), is an online, coupled algorithm in
the vein of DDM which moves agents along desired paths
and then resolves conflicts as they are encountered. The
desired paths are determined semi-independently at the start of

the process using a congestion-avoiding heuristic. A conflict
occurs when two or more agents want to move to the same cell
or swap cells. Our planner addresses conflicts by creating small
subproblems and looking up their solutions in an exhaustive
database computed offline. Specifically, whenever conflicts
arise, the algorithm:

1) Creates a set of subproblems that cover as many conflicts
as possible while occupying the least amount of space
(Section [[II-BY)

2) For all agents in a subproblem, temporary goals are
assigned within the subproblem. These typically advance
along their desired paths, but may deviate in case of
conflicting goals (Section [[II-B).

3) For all subproblems we perform a database query to find
paths for all agents to their temporary goals (Section [[V).

4) All agents advance or wait. Agents inside a subproblem
advance along the queried path. Agents outside of sub-
problems advance along their desired paths, unless their
next node enters the region of an existing subproblem.
These agents are marked as waiting (Section [[II-C).

5) Any agent that deviates from its desired path will receive
a new desired path.

We describe the details of the implementation in the fol-
lowing sections.

A. Problem definition

As in the classical MAPF problem, we are given the 4-
connected grid G = (V, E) with obstacle vertices removed,
the set of N robots have known start locations 29, ..., 2%
and wish to reach goal locations z7,...,2%. The objective
is to compute paths 20, ..., zT for each robot » = 1,..., N,
such that only edges in G are traversed, the goal is reached
2T = 2%, and no two robots occupy the same vertex or cross
the same edge at any time. It is necessary for each start and
goal location to be distinct. As an objective function, we use
the makespan T', which is the maximum number of steps for
a robot to reach its goal.

Our algorithm operates in semi-low resolution grid envi-
ronments as shown in Fig. [TT] This is an expanded class of
problems compared to the class of low resolution problems (as
shown in Fig. [0) assumed by DDM, which ensures there is a
2 x 2 block of empty cells containing each empty cell. Semi-
low resolution environments do not have long narrow passages
with branches, but they do contain doorways. Specifically,
define a “wide” cell as an empty cell for which there exists a
2 x 2 block of empty cells containing it, and a “narrow” cell as
an empty cell that does not meet this condition. We define a
semi-low resolution environment as one in which the graph of
narrow cells consists of disjoint paths, i.e., the narrow corridors
do not branch. We posit that most human environments are
constructed with this strategy so that any branching corridors
allow humans to pass by one another.

With such assumptions we can resolve conflicts locally us-
ing certain subproblem templates (Fig. [2), which are required
to be solvable regardless of the robot layout. 2 x 3 and 3 x 3
free-space subproblems were originally introduced in [|11]] and

Fig. 2: The three subproblem templates used in our implementation. The 2 X 3
and 3 x 3 are both obstacle free. The 5 X 2 doorway subproblem has exactly
one obstacle in the middle.

@ | O ®o| @ | @ @ | O
@ | O N o @ | O | @
@ | O ‘ @) @) @)
o | @ o] @ o] @ ol @

(a) (b) (© (@

Fig. 3: Doorways containing up to 7 robots can be solved by a complete,
suboptimal strategy using rotations and crossings. (a) The green robot has a
goal (empty green circle) on the opposite side of the doorway. (b) First we
rotate the source block CCW two times so that the green robot is in a position
to enter the doorway. We also rotate the target block so that there is a free
cell for opposite the doorway. (c) The green robot crosses to the other side.
(d) The target block is rotated counterclockwise so the green robot reaches
its goal.

can be solved optimally for any set of robots assuming that
goals are distinct. The 5 x 2 doorway subproblem that we
introduce in this paper has a narrow passage of length 1
between two 2 x 2 free blocks. Note that a longer narrow
corridor can be shrunk in a topological sense to a length-1
path. A doorway can be solved for any 7 robots with distinct
goals. Our planner handles this limit with a capacity constraint
that is enforced at each step of planning.

To see why the doorway admits a solution for any 7-robot
configuration, we construct a suboptimal solution strategy via
“rotation” and “crossing” operations (Fig.[3). First, if any robot
is in the doorway, we move it so that all robots are located
in one of the 2 x 2 upper or lower blocks. This may require
rotating robots in one of the blocks that has 3 or fewer robots
occupying it. Then, we choose any robot whose goal is on the
opposite side of the doorway, such that the opposite block is
not filled with 4 robots. Call the robot to move the moving
robot, the block that it occupies the source block, and the
opposite block the target block. The robots in the source block
will rotate until the moving robot is adjacent to the doorway
(Fig. 3b). The robots in the target block will rotate until an
empty space is adjacent to the doorway (Fig. 3b). Then, the
moving robot will cross the doorway into the empty space
(Fig. 3b). This continues until all robots are in the same block
as their goal. (If the goal is the doorway itself, either block

suffices). Next, the robots in each block will use the doorway
as a temporary location and reorder themselves so that all
robots are in the counterclockwise (CCW) order that matches
the CCW order of their goals. Then, they will rotate until all
robots are in their goal locations.

B. Subproblems

Let R be the set of all robots. At time ¢, suppose that each
robot 7 € R moves from x% toward the next position £+ on
its desired path. A robot is in conflict at time ¢ if it would
arrive on the same node as another robot at time ¢ + 1 or if it
crosses an edge being traversed by another robot. So for any
r,s € R, if 071 = #IT1 then 7 and s have a node conflict. If
ot = 21+ and 2! = 21+1, then r and s have an edge conflict.
Up to four robots may be involved in a single conflict.

To resolve conflicts, we create a set of subproblems (). Each
subproblem ¢ €) must match one of the three subproblem
templates allowing for rotational symmetries. Let Cells(q)
be the cells in the environment that are contained within the
subproblem. We say that a subproblem covers a conflict if all
of the robots involved in the conflict are located in Cells(q)
at time ¢. (This also implies that the robots are also located in
the subproblem at time ¢ + 1.)

The requirements for subproblems are as follows:

1) No subproblem may overlap with another existing sub-
problem.

2) The obstacle pattern of the template must match the
obstacles in the map accounting for symmetries.

3) The capacity constraint of the template cannot be vio-
lated. Only the 5 x 2 has a capacity constraint and is
described in detail in Section

4) The subproblem must cover at least one conflict.

1) Selecting subproblems: We use a greedy approach to
grow the set of subproblems to cover as many conflicts as
possible. We begin with a set of conflicts, C', and an empty
list of subproblems, (). We address each conflict sequentially.
For each ¢ € (' that has not already been covered by
a subproblem, let (). be the set of possible subproblems
that covers the conflict and adheres to the 3 subproblem
requirements described in Sec. If Q. is empty, we skip
¢ and induce waiting (Sec. [[lI-C). Otherwise, we select the
best subproblem ¢ € @) according to three prioritized criteria,
listed in highest to lowest priority:

1) Most conflicts covered. This allows us to resolve as
many conflicts as possible with a single subproblem,
resulting in fewer queries to the database.

2) Fewest waiting robots. We minimize the number of
robots with x%. ¢ Cells(q) and 21+ € Cells(q), which
would need to wait if ¢ were used.

3) Minimum subproblem area. This ensures robots outside
of subproblems are disrupted as little as possible, and
leaves more room to place subproblems later.

This strategy lets our planner choose better placements

amongst multiple applicable subproblem types. For example,
when it was originally introduced in [11]], the 3 x 3 template

O—><«t0 O—f>et0
o)
@—>< O @—1—><«O

Fig. 4: When two conflicts are next to each other, our planner prefers covering
both of them with a single 3 X 3 subproblem, because two 2 X 3 templates
would be needed to cover the conflicts while taking up more space.

was shown to be unnecessary since it takes up more space
than the 2 x 3, and 4-way conflicts can be resolved by letting
one robot wait. In our strategy, however, the 3 x 3 is able to
cover the same amount of conflicts (or more) than it would
take for multiple 2 x 3 templates (see Fig.).

It is a natural question whether a greedy subproblem place-
ment approach is reasonable, or whether we should seek an
even more optimized approach. We note that the subproblem
placement problem is similar to a weighted maximum inde-
pendent set (WMIS) problem [23], [24]. In geometric MIS
problems the goal is to find the largest subset of disjoint
geometric shapes from a given set, and in the weighted case
the sum of shape weights is maximized. MIS on graphs is
an NP-hard problem, but leveraging the regularity of shapes
geometric MIS is generally easier to approximate [25[]. In our
problem, every possible valid subproblem covering at least one
conflict is the set of shapes, and the weight of a region could be
the number of covered conflicts. Our method is especially fast,
does not require a full arrangement computation [23|] or LP
relaxation [25]], and it produces adequate results in quadratic
time. We have tested the greedy method against a brute force
approach that finds the best set of subproblems via extensive
sampling of hundreds of thousands of valid subproblem sets.
In a small, congested environment, our method was able to
cover 89.7% of conflicts, while the brute force method covered
90.7%. This suggests that the sacrifice of using a greedy
method is minimal, while the cost savings are tremendous.

2) Assigning robots to a subproblem: Robots that are
not directly involved in a conflict may still be included in
a subproblem. This avoids introducing new conflicts with
other surrounding robots after resolving one conflict. A robot
r € R is considered involved in the subproblem ¢ if both
2L, 31T € Cells(q). Denote this set of robots Involved(q).
Note that all robots in covered conflicts are involved.

3) Temporary goal assignments: Each subproblem will be
solved by querying the database. In order to perform this
query, we first need to assign temporary goals for each
r € Involved(q). Each goal must lie within the boundary
of the subproblem, no two robots may have the same goal
assignment, and these temporary assignments should disrupt
the robots as little as possible from their desired paths.

The ideal temporary goal assignment is the last node lying

—0
(@)

(a)

(©)

Fig. 5: An illustration of our goal assignment strategy. The robot’s current position is denoted by a solid circle and its final goal is denoted by a double circle.
First we examine the cost to go for each robot as shown in (a). The cost to go is 5, 5,4 for the purple, green, and orange robot respectively. We then find
the desired goal, which is indicated by a single empty circle (b). Green and orange have the same desired goal, but green has a higher cost to go, so green
is assigned its desired temporary goal while orange gets a random goal assignment (c).

on the robot’s desired path that is in Cells(q). This assignment
strategy, however, can result in robots being assigned the same
temporary goal so, instead, we employ a different strategy that
utilizes randomness. We first order the robots according to
cost-to-go, greatest to lowest. This gives us a prioritized list
of the robots. Then for each robot in this list, we attempt to
assign its ideal goal. If this node has already been assigned,
we choose a random node in Cells(q) that has not already
been assigned a goal (see Fig[5). We elect to use randomness,
rather than a deterministic strategy, to avoid deadlock. Our
testing has determined that deterministic strategies, such as
assigning the subgoal closest to the desired goal, result in a
substantial risk of deadlock and infinite loops.

4) Transformation to matching template: In order to query
the database, we must transform g to match its corresponding
template exactly. If ¢ is a 2 X 3 or 5 x 2, we first rotate ¢
if necessary to ensure that it has the correct orientation. (See
Fig. |§[) Lastly, we follow from [11] and order the robots so
that the starts and goals in the query match the order of the
starts and goals in the database, which eliminates the need
to store every permutation of robots in the database (See
Fig. [). We call the policy that performs this reordering 7.
After applying the necessary rotations and 7 to ¢, we then have
a templated subproblem that we use to query the database. Fig.
[] illustrates an example of a solution that the database would
return. After querying and getting a solution from the database,
s, we simply apply the inverse of the policy, 77!, to s to get
the solution in the correct order (See Fig. [f).

C. Waiting policies

The selected subproblems may fail to resolve all conflicts
and prevent the introduction of new conflicts. To cover these
cases, we employ a waiting policy. A waiting robot r will
alter its desired next step such that /1 = zf. There are four
scenarios in which one or more robots would need to wait:

1) A conflict cannot be addressed by a subproblem.

This can happen in two cases. First, the conflict has an
obstacle pattern that does not match known subproblem
templates (Fig [7h).

Second, there may not be space to place a subproblem
due to other subproblems being in the way (Fig [7p).

®
~
®

8 9 query = ((61 1)7 (37 8))
6 7 l i
W(quETy) = ((37 8)7 (67 1))
Z- | e
3 4 | s =((34443568), (6531))
! 2 71(s) = ((6531), (34443568))

Fig. 6: A subproblem is placed to cover a conflict between robots 1 and 2 (top
left). The temporary goals for robots 1 and 2 are denoted by empty circles.
The subproblem is rotated three times clockwise to match the 5 X 2 template
(top right). The starts and goals are then ordered for the query to the database
(bottom). The query is ((6, 1), (3, 8)) because robot 1 starts at cell 6 and has
a temporary goal at cell 1. Similarly, robot 2 starts at 3 and has a temporary
goal at 8. Next, we order the robots in the query by start cell according to the
values of the cells 1-9 shown here. After reordering, we query the database
for a solution. Lastly, we apply 7~ to the solution to get the paths in the
same order as our original query.

In this case, we let one robot proceed and the others
wait. Let cg C R be the robots involved in a conflict.
Then take an arbitrary » € cr and make every robot
in cg \ {r} wait at time ¢. Robot r will be allowed to
advance. The choice of moving robot does not seem to
affect performance much, so our algorithm chooses r
at random. Comparing against a deterministic strategy,
specifically choosing r as the robot furthest from its
goal, showed an insignificant performance change on all
problems tested.

2) Robot would enter an active subproblem. If a robot

O«>»0O

(@ (b)

)
T
)

™
o
ﬁ
o
ﬁ

e

(c) (@

Fig. 7: Examples of each case in which a robot would be marked as waiting. In Fig. (a) and (b), no valid subproblem exists. In Fig. (c), the red robot’s
next desired cell is inside a door with 7 robots. To prevent the doorway from becoming unsolvable, the red robot is marked as waiting. In Fig. (d), an active
subproblem is shown in blue resolving two conflicts between 4 robots. The red robot’s next desired cell is inside of the subproblem. This robot is marked as
waiting so that no new conflicts are introduced. The pink robot’s next desired cell is the red robot’s current cell, so pink also gets marked as waiting.

is not in any subproblem at time ¢ and its desired step
at t + 1 would cause it to enter a subproblem, then it
must wait (Fig. [7d).

3) Advancement would violate a capacity constraint.
The 2 x 3 and 3 x 3 subproblems are solvable even when
they are fully packed, but the 5 x 2 doorway is only
solvable with a maximum of 7 robots. If this capacity
constraint would be violated on the robot’s next step
(Fig. [7e), the robot outside the doorway must wait.

4) Next desired cell already contains a waiting robot.
When we mark a robot 7 in cell v as waiting at time ¢,
we then have to mark any robot ¢ such that xﬁ“

as waiting at time t¢. This process of marking cells

as waiting at time ¢ creates a flood-fill style recursive

algorithm that marks any robot wanting to enter a

waiting cell as waiting as well (Fig. [7d).

=

A subtle remark is that it is beneficial to perform the
waiting logic before assigning robots to subproblems, since
a robot r that intends to leave a subproblem ¢ can be omitted
from Involved(q) if its intended next cell will remain free.
This greatly reduces the risk of unnecessary waiting for
robots inadvertently finding themselves at the boundary of
subproblems and unable to leave. On the other hand, if the
next cell hits another subproblem or would cause 7 to hit a
waiting robot, then the robot should be included.

D. Full algorithm

The algorithm takes as input a map of the environment, F,
start nodes z9,, and goal nodes x¢. . It then computes the
decoupled path for each robot using A* with a congestion-
avoiding heuristic (line 1). Then, it advances robots one step
at a time.

At the start of the loop we read each robot’s next desired
position 251 in its decoupled path (line 4). The set of waiting
robots W and the set of subproblems () are initialized to
empty, and we get a list of all conflicts that will occur
if the robots advance (lines 5-7). Then we address each
conflict sequentially. If it has not already been covered by
a subproblem, we attempt to place a subproblem that covers it
as we described in Section [[II-B] If no valid subproblem can
be found, we mark all robots in conflict except one as waiting
(lines 8—15). We then create a waiting map from the initial list

of waiting robots and freeze waiting robots (lines 16—18). Then
for each subproblem, we assign temporary goals and query the
database for a solution (lines 20-22). Next, we update the next
desired node of each robot involved in the subproblem (lines
23-24). Finally the robots advance and we replan each robot’s
decoupled path (line 25-26). This could be done only if that
robot deviated from its intended path, i.e., ! # P.[t + 1],
but for simplicity we simply replan all robots. Note that unlike
DDM, we do not preserve subproblems until their solutions
are fully executed, and in Sec. we show this can prevent
unnecessary waiting by allowing robots to leave subproblems.
We continue this loop until every robot is at its goal node.

Algorithm 1: Experience-Based Multi-agent Planning (EMP)

1. Pi.y < PlanDecoupledPaths(z9. y,z{. x. G)
2: 140

3. while 2%, # 2.,

4: e P t+1] forr=1,...,N

5 W+ 0

6 Q<+

7. C « AllConflicts(x!.y, z 1)

8 for ¢ in C

9: If ¢ € Cells(q) for any g € @Q, skip it.
10: Q. + ValidSubproblems(c,G, Q)

11: it Q.#0

12: q + BestSubproblem(Q.,C,z}.)
13: Add ¢ to Q

14: else

15: Add all but one robot in Robots(c) to W

16: Ruyqit = CreateWaitingMap(z. 5, 24, Q, W)
17: for r € Ryait

18: AL ol

19: for ¢ in Q

20: R, + Involved(q,x}. v, 2t 5)
21: q <+ AssignTempGoals(q, Pr,)
22: Pf < SolveSubproblem(q)

23: for r € R,

24: i+« Pa2]

25 oty gttt

26: Py ReplanPaths(wifj\l,, Pi.n,G)
27: t+—t+1

O O @ | ® | O
L] @)

BN N
® o ® Q
O -O O

Fig. 8: A query to the database provides starts (shown in sold circles) and
goals (shown in empty circles). The database then gives us a collision free
path for each robot in the query. In the 5 X 2 example here, the solution
is for the green robot to get out of the way and wait for blue to pass by
before continuing to its goal. Note that our planner does not execute the
entire solution to a subproblem. Instead, we take only the first step of the
paths.

The asymptotic running time of this algorithm is dom-
inated by the subproblem selection step because there are
O(n) conflicts, each conflict has over a dozen possible valid
subproblems, and our selection metrics take O(n) time to
compute. The database query only uses an O(1) hash lookup.
Overall, a single iteration of the main loop is O(n?) leading
to an O(hn?) algorithm where A is the computed makespan.

IV. DATABASE

We generate an exhaustive set of queries for each of the
2 x 3,3 x 3, and 5 x 2 environments by considering every
collision-free set of start and goal points. We choose to
use the integer linear programming-based method proposed
in [[6] due to its speed in solving problems in congested
environments with up to 100% robot vertex occupancy. This is
also the method that DDM [[11]] uses to generate their database.
Following from [11]], we transform each set of paths that we
compute to generate several other solutions. The total number
of problem scenarios for each subproblem environment is

given by
Mrob | 2
Z Nyert-:
(n'uert - Z)'
1=2

where n,.-+ is the number of vertices in the subproblem
environment and 7n,.,, is the maximum number of robots
we consider for the subproblem. For the 2 x 3, 3 x 3, and
5 x 2 subproblems, the number of scenarios is 1.2 X 109,
3.0x 10", and 3.7 x 101 respectively. It is intractable to solve
this many scenarios; however, the use of path transformations
significantly reduces the number we must solve.

First, we sort the individual paths in a scenario by the
start position. This allows us to group equivalent scenarios
together, and reduce the permutation giving the possible start
positions to a combination. Then, each local environment that
we consider has a different set of valid transformations. In
every environment, the paths can be reversed to generate a set
of paths from the goals to the starts.

In the 2 x 3 environment, the paths can also be rotated 180°,
and mirrored across a vertical line through the center of the

environment. Thus, each set of paths we compute represents
a class of up to 8 path sets in the database. The number of
scenarios we must solve is then approximately 1.7 x 103. The
2 x 3 database took 14.2 seconds to generate and requires
about .09 MB of storage.

In the 3 x 3 environment, the paths can be rotated 90°,
180°, and 270° and mirrored across a vertical line through the
center of the environment. Accounting for duplicates, each set
of paths we compute corresponds to a class of up to 16 path
sets in the database. The number of scenarios required to be
solved is then approximately 1.1 x 10°. The 3 x 3 database
took 5 hours and 55 minutes to generate and requires about
2 GB of storage space. The average time to query the 3 x 3
databases is 2.43 x 10~% seconds.

In the 5 x 2 doorway environment, the paths can be mirrored
across a horizontal line through the center of the environment.
Thus, each set of paths that we generated can only correspond
to up to 4 path sets in the database. This, in addition to the
more difficult scenarios present in the hallway environment,
which features a narrow passage, led to a much longer database
generation time. The number of 5 x 2 scenarios required to
be solved is approximately 3.5 x 10°. It took 13.5 days to
generate the path sets for 2-6 robots. Due to the larger time
frame required to solve the more difficult and larger set of 7-
robot scenarios, we omitted this from our experiments and set
the capacity limit for the doorway subproblem to a maximum
of 6 robots. The 2 x 5 requires 1.37 GB of storage space.
On average, it took 2.26 x 10~7 seconds to query the 2 x 5
database.

V. SIMULATED RESULTS
A. Comparison with existing baselines

To highlight the differences of our EMP planner from DDM,
Fig. [I0] compares the two directly on the low resolution
environment shown in Fig.[9] Public C++ code provided by the
DDM authors [11] is used in this comparison. Each data point
is the result of 20 trials ran with random start and goal configu-
rations for each robot. We use a metric of path deviation which
measures how much a robot’s solved path deviates from the
optimal decoupled path solved by A*. Specifically, for robot
7, this metric is given by dev = ||path’y,,, ., — Pathj oupical |
We also compare the number of steps that each robot spends
waiting.

The results show that EMP reduces both the amount of
waiting and the deviation from the optimal path. This is
because, in our planner, the solutions to subproblems are
not executed to completion, meaning that there are fewer
robots waiting for subproblems to finish before advancing. The
deviation from the originally planned path is also low, because
EMP always chooses temporary goals on the robot’s original
decoupled path when possible, so the robot is less likely to
deviate from its optimal path. This indicates that our planner is
better suited for settings of continuous robot task assignment,
in which once a robot reaches its goal, it receives a new
goal without waiting for the other robots to reach their goals.
Overall we observed no statistically significant difference in

https://github.com/arc-l/ddm/tree/main

Fig. 9: Planned paths for 300 robots in a warehouse-like environment. Starts
(solid circles) and goals (empty circles) were chosen randomly.

17.5 A
—— DDM

15.01 —— Ours

12.5 A1
10.0 A1
7.51
5.0 1

Path deviation / robot

2.5 1
0.0 1

20 40 60 80 100

12

10 A

Waiting steps / robot

20 40 60 80
Number of robots

100

Fig. 10: Comparing EMP and DDM on the environment in Fig. EI Mean and
standard deviation over 20 randomized runs are shown.

makespan between EMP and DDM, since makespan is limited
primarily by the robot that is farthest from its goal.

In especially crowded environments (> 70%), we found that
DDM’s strategy of executing the entire subproblem solution
proved beneficial. In the empty 10 x 10 environment at 80%
occupancy, our makespan explodes to anywhere between 158-
400, but DDM maintains reasonable makespan in the same
scenario at around 81-144. This is because when we only
execute one step of the subproblem, the conflict is likely to
occur again in the next time step due to the high volume of
robots. In these high congestion scenarios, executing the entire
subproblem appears to be the better strategy.

We also ran CBS on both the warehouse environment in
Fig [0 and the rooms environment in Fig [T1] CBS solved the

T= T .
i_ S ST lLT
S i -
[. S T, |
e T
_14 Eﬁ il
I EE = =
i T“ .
el s e
mnl = =Ir=i-a
Pl llo“ L

Fig. 11: Planned paths for 200 robots on a floorplan with rooms with width-1
doorways and random obstacles. Starts (solid circles) and goals (empty circles)
were chosen randomly.

warehouse environment fairly quickly in around 0.1-10s for
30 robots. However, in the rooms environment CBS failed
to find a solution with a time limit of 10 minutes in 17/20
trials, and some runs took over 6 minutes to solve. Our
planner by comparison takes anywhere from 2—-12s to solve
the same scenario. Note that our algorithm is implemented in
non-optimized Python and CBS is a publicly available C++
implementation [2]]. The reason for the long running time of
CBS is that its conflict tree becomes unmanageable in large
environments with bottlenecks.

B. Environments with doorways

We also demonstrate that EMP generates solutions for hun-
dreds of robots on environments containing doorways, even
on a more challenging 64 x 64 environment that contain both
doorways and obstacles scattered throughout rooms randomly
(Fig. [TI). This environment was created by augmenting a
map from the MAPF benchmark website with obstacles inside
the rooms [2]]. Scaling results are shown in Fig. showing
moderate levels of waiting even at high levels of congestion.

C. Ablation studies

To evaluate the effects of each of EMP’s contributions, we

examine how several design choices affect performance:

1) Executing all steps vs one step of a subproblem
solution. EMP uses one step of a subproblem’s solution,
then discards it. In contrast, DDM retains subproblems
between steps until all robots have reached their goals.

2) Prioritized vs random goal assignment. EMP assigns
temporary goals on the robot’s intended path and uses
prioritized assignment in the case of conflicts. DDM
assigns random goals in the case of a conflict.

3) First vs best subproblem placement. EMP optimizes
each subproblem according to various heuristics, while
DDM picks the first valid subproblem.

https://movingai.com/benchmarks/mapf.html

40 1

20 1

Path deviation / robot

20 30 40 50 60 70 80 90 100

300 A

250 4

Makespan

200 A

150 -

20 30 40 50 60 70 80 90 100

30 A

20 1

10 4

Waiting steps / robot

20 30 40 50 60 70 80 90
Number of robots

100

Fig. 12: Results of our planner from the environment in Fig.

o——— - °
|| |57
H" _‘-_
I!I‘;_|

Fig. 13: Solution paths for a 5 X 9 doorway environment with 18 robots. Path
segments are shifted within each cell to more clearly illustrate the complexity
of robot coordination in and around the doorway.

4) Number of subproblem templates. Including the 3 x
3 subproblem does not change feasibility, but has the
potential to improve efficiency.

Table[[|shows the results of running the planner on an empty
10 x 10 environment with 40 robots under various settings.
EMP is our planner, which uses prioritized goal assignment,
finds the best subproblem, and executes only the first step of
the subproblem solution. “EMP first” is our planner that uses
the first valid subproblem, rather than searching for the best
subproblem. “EMP random” is our planner, but uses purely
random subproblem goal assignment instead of prioritized.
“EMP first + random” finds the first valid subproblem, uses
random subproblem goal assignment, and executes only one
step of the subproblem. We also include results from DDM

Path deviation = Makespan Waiting steps
EMP 13.5 45.2 11.0
EMP w/ first subproblem 17.4 52.7 20.7
EMP w/ random goal 14.5 48.2 10.5
EMP w / first + random 19.5 60.8 21.9
DDM 22.0 45.5 22.5

TABLE I: Ablation study of planner settings. Tested on 40 robots in the empty
10 x 10 environment, averaged over 20 random starts and goals.

800 A
600 -
400 -

Makespan

200 A
O-

300 A

200 A

100 A

Waiting steps / robot

10 20 30 40 50 60 70 80
Number of robots

Fig. 14: Excluding the 3 X 3 subproblem template leads to longer makespans
and more waiting in crowded scenarios. Results averaged over 20 random
trials in an empty 10 x 10 environment.

which is the same style as our planner, but uses random goal
assignment, finds the first valid subproblem, and executes the
entire subproblem solution. These results show that finding the
best subproblem (EMP and EMP w/ random goal assignment)
cuts the number of waiting steps per robot nearly in half.
The path deviation is smaller using both prioritized goal
assignment and the best subproblem. This is because the
prioritized goal assignment keeps robots closer to their optimal
path, and the best subproblem reduces unnecessary waiting.

Finally, we found that including the 3 x 3 template is helpful
in crowded environments. Fig. [I4] shows EMP’s performance
in the same empty 10 x 10 environment with varying levels
of occupancy. Observe that the 3 x 3 is particularly useful
in crowded environments (> 60% occupancy) because it
can cover more conflicts than the 2 x 3. However, at lower
congestion levels there is no significant improvement. Since it
takes much longer to generate an exhaustive solution database
for larger subproblems, an EMP implementer should be careful
to choose subproblem templates that address bottlenecks likely
to be observed in practice.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an experience-based MAPF solver
that extends a prior framework to a broader domain of envi-
ronments containing doorways. By leveraging an exhaustive
database of solutions for three subproblem templates, our
method can solve congested problems with hundreds of robots
in seconds. We developed new strategies for selecting subprob-

lems and assigning temporary goals that allow our method to
handling the new doorway subproblem template efficiently and
with fewer robots required to wait for subproblem resolution.
We also examine the question of whether providing more
subproblem templates are likely to boost experience-based
MAPF performance, and we conclude that improvements are
likely only in narrowly construed problem domains.

In the near future we are interested in speeding up our
runtime by optimizing the implementation of our code. More
broadly, our strategy to solve doorways is a first step toward
experience-based conflict resolution in long and branching
narrow passages. Subproblems to negotiate passages with
complex topology (e.g., T junctions, four-way junctions, cor-
ridors with cutouts) could potentially be incorporated in our
framework, but would require more work in studying how to
topologically deform map geometry into canonical templates
and to deform solutions back. Finally, we are interested in
studying how experience can be leveraged for solving MAPF
problems with continuous-space or continuous-time dynamics,
such as in congested urban driving scenarios or warehouses
that do not impose a strict grid layout.

ACKNOWLEDGEMENTS

We would like to thank Simon Kato and Joao Marques
for their valuable feedback. Moan was supported by the
National Science Foundation Graduate Research Fellowship
(NSF GRFP). McBeth was supported by Foxconn Interconnect
Technology (FIT) and the Center for Networked Intelligent
Components and Environments (C-NICE) at UIUC.

REFERENCES

[1] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. S. Kumar, and S. Koenig,
“Lifelong multi-agent path finding in large-scale warehouses,” in Pro-
ceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems, ser. AAMAS ’20. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2020, p.
1898-1900.

[2] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker,
J. Li, D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, and R. Bar-
tak, “Multi-agent pathfinding: Definitions, variants, and benchmarks,”
Symposium on Combinatorial Search (SoCS), pp. 151-158, 2019.

[3] D. Atzmon, A. Diei, and D. Rave, “Multi-train path finding,” in Twelfth
Annual Symposium on Combinatorial Search, 2019, pp. 125-129.

[4] D. M. Saxena and M. Likhacheyv, “Planning for complex non-prehensile
manipulation among movable objects by interleaving multi-agent
pathfinding and physics-based simulation,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA), 2023, pp. 8141-8147.

[5] H. Ma, C. Tovey, G. Sharon, T. K. Kumar, and S. Koenig, “Multi-
agent path finding with payload transfers and the package-exchange
robot-routing problem,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, Mar. 2016. [Online]. Available:
https://ojs.aaai.org/index.php/AA Al/article/view/10409

[6] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1163-1177, 2016.

[71 Q. Sajid, R. Luna, and K. E. Bekris, “Multi-agent pathfinding with
simultaneous execution of single-agent primitives,” in Fifth Symposium
on Combinatorial Search (SoCS), 2012, pp. 19-21.

[8] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40-66, 2015.

[9] L. Cohen, T. Uras, and S. Koenig, “Feasibility study: Using highways
for bounded-suboptimal multi-agent path finding,” in Proceedings of the
International Symposium on Combinatorial Search, vol. 6, no. 1, 2015,
pp. 2-8.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

J. Li, G. Gange, D. Harabor, P. J. Stuckey, H. Ma, and S. Koenig, “New
techniques for pairwise symmetry breaking in multi-agent path finding,”
in Proceedings of the International Conference on Automated Planning
and Scheduling, vol. 30, 2020, pp. 193-201.

S. D. Han and J. Yu, “Ddm: Fast near-optimal multi-robot path plan-
ning using diversified-path and optimal sub-problem solution database
heuristics,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
1350-1357, 2020.

T. Guo and J. Yu, “Efficient heuristics for multi-robot path planning in
crowded environments,” in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2023, pp. 6749-6756.

M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Symposium on Combinatorial Search, 2014.

E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin, and
S. E. Shimony, “Icbs: The improved conflict-based search algorithm for
multi-agent pathfinding,” in Symposium on Combinatorial Search, 2015.
H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig,
“Searching with consistent prioritization for multi-agent path finding,”
in The Thirty-Third AAAI Conference on Artificial Intelligence,
ser. AAAI'19. AAAI Press, 2019. [Online]. Available: https:
//do1.org/10.1609/aaai.v33101.33017643

G. Wagner and H. Choset, “M*: A complete multirobot path planning
algorithm with performance bounds,” in Proc. IEEE Int. Conf. Intel.
Rob. Syst. (IROS), 2011, pp. 3260-3267.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100-107, 1968.

K. Vedder and J. Biswas, “X*: Anytime multi-agent path finding
for sparse domains using window-based iterative repairs,” Artificial
Intelligence, vol. 291, p. 103417, 2021. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0004370220301661

D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA). Saint Paul, Minnesota: IEEE, 2012, pp. 3671-3678.
D. Coleman, I. A. Sucan, M. Moll, K. Okada, and N. Correll,
“Experience-based planning with sparse roadmap spanners,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
2015, pp. 900-905.

C. Chamzas, Z. Kingston, C. Quintero-Pefia, A. Shrivastava, and L. E.
Kavraki, “Learning sampling distributions using local 3d workspace
decompositions for motion planning in high dimensions,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021, pp.
1283-1289.

A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion
planning networks,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 2118-2124.

W. Galvez, A. Khan, M. Mari, T. Momke, M. R. Pittu, and A. Wiese, “A
3-approximation algorithm for maximum independent set of rectangles,”
in Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2022, pp. 894-905.

A. Adamaszek and A. Wiese, “Approximation schemes for maximum
weight independent set of rectangles,” in 2013 IEEE 54th annual
symposium on foundations of computer science. 1EEE, 2013, pp. 400—
409.

T. M. Chan and S. Har-Peled, “Approximation algorithms for maximum
independent set of pseudo-disks,” in Proceedings of the twenty-fifth
annual symposium on Computational geometry, 2009, pp. 333-340.

https://ojs.aaai.org/index.php/AAAI/article/view/10409
https://doi.org/10.1609/aaai.v33i01.33017643
https://doi.org/10.1609/aaai.v33i01.33017643
https://www.sciencedirect.com/science/article/pii/S0004370220301661
https://www.sciencedirect.com/science/article/pii/S0004370220301661

	INTRODUCTION
	RELATED WORK
	Multi-robot Path Planning
	Experience-based Planning

	Method
	Problem definition
	Subproblems
	Selecting subproblems
	Assigning robots to a subproblem
	Temporary goal assignments
	Transformation to matching template

	Waiting policies
	Full algorithm

	Database
	Simulated Results
	Comparison with existing baselines
	Environments with doorways
	Ablation studies

	Conclusion and Future Work
	References

