
Robotics: Science and Systems 2024
Delft, Netherlands, July 15-July 19, 2024

1

“Set It Up!”: Functional Object Arrangement with
Compositional Generative Models

Yiqing Xu⇤, Jiayuan Mao†, Yilun Du†, Tomas Lozáno-Pérez†, Leslie Pack Kaebling†, and David Hsu⇤
⇤School of Computing, Smart System Institute, National University of Singapore

† CSAIL, Massachusetts Institute of Technology

Abstract—This paper studies the challenge of developing robots
capable of understanding under-specified instructions for creat-
ing functional object arrangements, such as “set up a dining
table for two”; previous arrangement approaches have focused
on much more explicit instructions, such as “put object A on
the table.” We introduce a framework, SetItUp, for learning
to interpret under-specified instructions. SetItUp takes a small
number of training examples and a human-crafted program
sketch to uncover arrangement rules for specific scene types.
By leveraging an intermediate graph-like representation of ab-
stract spatial relationships among objects, SetItUp decomposes
the arrangement problem into two subproblems: i) learning
the arrangement patterns from limited data and ii) grounding
these abstract relationships into object poses. SetItUp leverages
large language models (LLMs) to propose the abstract spatial
relationships among objects in novel scenes as the constraints
to be satisfied; then, it composes a library of diffusion models
associated with these abstract relationships to find object poses
that satisfy the constraints. We validate our framework on a
dataset comprising study desks, dining tables, and coffee tables,
with the results showing superior performance in generating
physically plausible, functional, and aesthetically pleasing object
arrangements compared to existing models. 1

I. INTRODUCTION

Developing robots capable of understanding human goals
and making plans to achieve them is a crucial step forward in
embodied intelligence. However, this endeavor is complicated
by the inherent ambiguity and under-specification of a broad
range of human goals. For example, consider one of the most
common yet time-consuming daily tasks [American Time Use
Survey; 26]: setting and cleaning up tables. Human instruc-
tions are inherently under-specified; they can be as vague as
“Could you set up a dining table?” Understanding such under-
specified instructions is fundamentally challenging, requiring
robots to understand and ground physical feasibility, object
functionality, commonsense aesthetics, and user preferences.

While a large body of work has tackled the problem of
generating object arrangements at a table-top or even at a
house scale, most of it focused on grounding spatial relation-
ships and making robot plans under explicit and unambiguous
instructions, e.g., “put the plate next to the fork” [3, 5, 8, 19,
20, 23, 24, 34, 36]. By contrast, in this paper, we consider
the task of generating object arrangements based on under-
specified descriptions, such as “tidy up the study table,” “set
a Chinese dinner table for two,” and “make space on a coffee
table for a chess game.” Given such ambiguous instructions,

1Project page: https://setitup-rss.github.io/

,QVWUXFWLRQ��6HW�XS�D�EUHDNIDVW�WDEOH�

�D��:H�ILUVW�JHQHUDWH�DEVWUDFW�VSDWLDO�UHODWLRQVKLSV�JLYHQ�LQSXW�LQVWUXFWLRQV�DQG�
REMHFWV��DQG�WKHQ�JURXQG�WKHVH�UHODWLRQVKLSV�LQWR�REMHFW�SRVHV�

3ODWH 6SRRQ

&KHH]
,W

$SSOH

QHDU�IURQW�HGJH

OHIW ULJKW
KRUL]RQWDOO\�DOLJQHG

YHUWLFDOO\�
DOLJQHG

�E��,QLWLDO�DQG�ILQDO�REMHFW�DUUDQJHPHQW�

%HIRUH $IWHU

7UDLQLQJ�
([DPSOHV

�
7HVW�,QSXWV

2EMHFW
3RVHV

Fig. 1. (a) At test time, given human instruction and a set of objects (possibly
unseen during training), our framework SetItUp first generates a set of multi-
ary spatial relationships among subsets of objects. These spatial relationships
are based on a library of abstract spatial relationships and are visualized in
the multi-ary graphical representation. (b) Then, we employ a compositional
diffusion model to generate concrete object poses that a robot can execute
based on a general motion planner.

our goal is to generate configurations of objects that are
physically feasible, functional, aesthetic, and aligned with user
preferences. We call this task functional object arrangement
(FORM), and it presents three challenges.

First, unlike many purely spatial relationships that have
large-scale annotations [15] or can be synthetically generated
according to human-written rules, global scene annotations
for functional object arrangements are usually scarce. This
data scarcity issue becomes more severe when considering
the learning of subjective preferences of a particular user.
Second, not only is there very little data available, but there
is also a need to make arrangement plans for a wide variety
of objects, many of which might be unseen during training.
The criteria for successful functional object arrangement are
not one-size-fits-all; they must apply to different objects and
settings, leading to numerous acceptable arrangements, posing
a significant challenge in generalization. Finally, pinpointing
a universal measure or rules for the commonsense object
arrangement is challenging due to its multifaceted nature.

To tackle the under-specified and multifaceted nature of
functional object arrangements, our first contribution is a novel

�

�����������������������

*URXQGLQJ�*UDSK�RI�
5HODWLRQVKLSV�

) �-f���&f �" t(*)$/*-u_
) �-f!-*)/f �" t& 4�*�-�u_
���&f#�'!t'�(+u_
' !/f*!t& 4�*�-�_�(*0. u_
�'$") �f$)f#*-$5*)/�'f'$) t
��& 4�*�-�_�(*0. _�(0"
u_
```

2EMHFW�3RVHV�

(*)$/*-a����������������������
& 4�*�-�a����������������������
(*0. a������������������������
'�(+a��������������������������
(0"a��������������������������
```

�

�

�����������������������

o�$�4�0+���
./0�4�� .&`p
o�$�4�0+���
./0�4�� .&`p
o�$�4�0+���
./0�4�� .&`p

³7LG\�XS�D�
VWXG\�GHVN�´
³7LG\�XS�D�VWXG\�
GHVN�´

³3OHDVH�VHW�XS�D�VWXG\�
GHVN�WKDW
V�VXLWDEOH�IRU�
ZRUNLQJ�RQ�P\�
FRPSXWHU�´

0HVV\�7DEOH

//0�%DVHG�
$EVWUDFW�5HODWLRQVKLS

*HQHUDWLRQ

&RPSRVLWLRQDO�
'LIIXVLRQ�%DVHG
&RQVWUDLQW�6ROYHU�

3URSRVHG�/D\RXW

Fig. 2. Overall architecture of SetItUp. Given a novel instruction desc and a set of objects O, we first query an LLM to induce an abstract spatial relationship
description of the target object arrangements. The input to the LLM also includes a handful of training examples D and a human-defined task-family sketch.
Next, we ground these abstract relationships into object poses by composing a library of diffusion models to generate object poses that simultaneously comply
with all proposed spatial relationships.

task formulation and the corresponding evaluation metrics. For
a given scene type, e.g., study desks or dining tables, we
formalize the task as generating the poses of objects given their
category names and shapes, based on a small set of examples.
We used 5 examples per scene type in our experiments. These
training examples include paired instructions and reference
object arrangements, which can be easily collected by users.
Furthermore, to enable strong and controllable generalization
to unseen instructions and objects, for each scene type, we
provide a short program sketch written in Python-like domain-
specific language as a hierarchical generative model specifica-
tion. The sketch provides a list of function names, signatures,
and descriptions, but does not include any implementation.
Essentially, it decomposes the arrangement task into simpler
subproblems as a global “guideline” for machine learning
algorithms. Finally, our benchmark also comes with a col-
lection of rule-based metrics and human experiment rubrics
for holistically evaluating different solutions in terms of their
physical feasibility, functionality, and other aesthetic aspects.

Our second contribution is a novel hierarchically generative
approach, as illustrated in Figure 1a. Its key idea is to use a li-
brary of abstract spatial relationships, e.g., left-of, horizontally-
aligned, as its intermediate prediction task. This breaks down
the task of predicting object poses into two steps: generating a
set of object relationships that should be satisfied in the final
arrangement, and generating concrete object poses that comply
with these relationships. In our system SetItUp, we leverage
large language models (LLMs) for the first prediction task and
use a library of compositional generative models to ground the
relationships into poses.

This problem decomposition brought by our abstract re-
lationship representation significantly improves the model
along all evaluation metrics, especially its generalization to
scenarios involving unseen objects and novel instructional
contexts. On a new dataset we collected, which comprises
three scene types: study desks, dining tables, and coffee tables,
we compare our framework with methods based solely on
neural generative models (inspired by Liu et al. [18]) or large
language models (inspired by Wu et al. [30]). Both qualitative
examples and quantitative human studies demonstrate that
our model surpasses baselines in all aspects of generating
physically plausible, functional, and aesthetically appealing

object arrangement plans.

II. PROBLEM FORMULATION

We frame functional object arrangement (FORM), using
a novel few-shot learning paradigm. Specifically, each object
arrangement task family is a tuple hD, desc,O, sketchi, where
D represents a small dataset of examples corresponding to
a specific scene type and user preferences. Each training
example d 2 D is a tuple hdescd,Od,Pdi. Here, descd denotes
a natural language instruction for a specific task in that family
(e.g., “set up a dining table for two”) that implies a pre-
ferred object arrangement. Od and Pd encode a desired scene
configuration that fulfills the instruction descd. Specifically,
Od = {o0, o1, . . . , oN�1} denotes a collection of input objects
categorized by two static properties: types (ni) and shapes (gi,
represented as 2D bounding boxes in this paper). The desired
“output” arrangement Pd = {p0, p1, . . . , pN�1} is represented
by a planar pose for each object, expressed isn coordinates
and orientation (x, y, ✓)2. Since we only focus on tabletop
arrangement tasks in this paper, all poses are represented in a
canonical table frame. We need very few (on the order of five)
examples, making it easy for them to be collected by users.

At deployment time, we consider a new task instruction
desc and a novel set of objects O = {o0, o1, . . . , oN�1},
which may vary in sizes and categories from the training
examples; the system must determine a set of poses P for
each object. These poses should satisfy user instructions by
being physically plausible, functional (logically positioned for
their intended use), aesthetic (e.g., arrangements are visually
appealing), and aligned with human preferences (conforming
to the pattern of arrangements communicated in the training
data D as well as meet specific additional criteria in the user’s
instruction desc).

To enable strong and controllable generalization to an
unseen set of objects and instructions, we introduce a program
sketch for each task family. This sketch defines a hierarchical
generative model for generating object arrangements for a par-
ticular family of tasks. It uses a Python-like syntax to outline
the task-solving procedures with only function names, signa-
tures, and descriptions, but no implementations. Essentially, it

2This basic problem formulation can be extended to 3D shapes and poses.

decomposes the problem of generating the full arrangement
into a hierarchy of smaller sub-problems. Each sub-problem
has a simpler input-output specification, such as categorizing
object types and generating the arrangement of a subset of the
object. In this paper, we focus on leveraging human-defined
sketch descriptions for three domains: study desks, coffee
tables, and dining tables. Moving forward, the sketches could
conceivably be generated from free-form language instructions
from humans as in Zelikman et al. [35].

III. SET IT UP

To address the challenges of data-efficient learning and ro-
bust generalization in functional object arrangement (FORM)
tasks, we introduce a novel hierarchical generative framework,
namely SetItUp. The key idea of SetItUp is to use a library of
abstract spatial relationships to construct a grounding graph,
which serves as an intermediate representation for solving the
arrangement task. This library is composed of basic spatial
relationships such as left-of and horizontally-aligned, which
can be unambiguously defined by considering the geometric
features of objects. Based on this library, we can decompose
the problem of learning to generate object poses given their
categories, shapes, and the task instructions into two subprob-
lems: learning to generate the set of spatial relationships that
encodes the arrangement plan, and learning to generate object
poses based on a set of specified spatial relationships.

Figure 2 illustrates the overall framework. Central to our
framework is the use of abstract spatial relationships as the
intermediate representation. This high-level abstraction over
object poses naturally breaks down FORM tasks into two
generative sub-tasks. The first sub-task involves a LLM-
based symbolic generative model that generates the functional
abstract relationships for the test objects. The second sub-
task involves a diffusion-based generative model that takes
these abstract relationships as input and propose the corre-
sponding object poses. Essentially, SetItUp combines large
language models (LLMs) as a repository of commonsense
knowledge and as a strong few-shot learner for generating
abstract descriptions of the arrangement, and compositional
diffusion models as powerful generative models to ground
these spatial relationships into object poses. Given the task
input tuple hD, desc,O, sketchi, we first convert all training
examples in D into a language description based on the
abstract spatial relationship library. Next, we prompt an LLM,
based on the task inputs, to generate a set of abstract spa-
tial relationships among test objects. This gives us a factor
graph-like representation of the desired arrangement. Finally,
we leverage a composition of the diffusion-based generative
models associated with each abstract relationship to predict the
output object poses associated with each object, which comply
with the factor graph description generated by the LLM.

In the following sections, we will first present the li-
brary of abstract spatial relationships (Section III-A), where
each relationship is associated with a simple geometric-rule-
based classifier and a neural network-based generative model.
Following that, we will introduce a compositional diffusion

TABLE I
THE SET OF ABSTRACT SPATIAL RELATIONSHIPS AMONG OBJECTS. THESE

RELATIONSHIPS ARE FORMALLY DEFINED BY RULES BASED ON 2D
OBJECT SHAPES AND POSES IN THE CAMERA FRAME.

Unary Relationships

central column central row
central table left half
right half front half
back half near left edge
near right edge near front edge
near back edge

Binary Relationships

horizontally aligned vertically aligned
horizontal symmetry on table vertical symmetry on table
left of right of
centered on top of

Ternary Relationships

horizontal symmetry about axis obj vertical symmetry about axis obj

Variable-Arity Relationships

aligned in horizontal line aligned in vertical line
regular grid

model inference algorithm capable of generating object poses
based on the factor graph specification of object relationships.
Finally, in Section III-C, we specify our strategy for prompting
an LLM based on the training examples, test inputs, and task-
family sketches to propose the abstract spatial relationships.

A. The Spatial Relationship Library

Our spatial relationship library, R, encompasses 24 basic
relationships listed in Table IV. Each abstract relationship
takes a (possibly variable-sized) set of objects as arguments —
and describes a desired spatial relationship among them. These
abstract relationships provide one level of abstraction over 2D
poses and, therefore, can serve as a natural input-output format
for LLMs. On the other hand, they are sufficiently detailed
to be directly interpreted as geometric concepts. To extend
the system to task families requiring novel relationships, it
would be straightforward to augment this set. Furthermore,
these spatial constraints are defined unambiguously based on
simple geometric transformations, which enables us to effec-
tively classify and generate random object arrangements that
satisfy a particular relationship. Finally and most importantly,
this finite set of relationships can be composed to describe
an expansive set of possible scene-level arrangements with
indefinite number of objects and relationships.

Formally, each abstract spatial relationship R is associated
with two models: a classifier model hR and a generative model
fR. Let kR be the arity of the relationship. The classifier
hR is a function, denoted as hR (g1, . . . , gkR , p1, . . . , pkR),
that takes the static properties of kR objects (shapes repre-
sented by 2D bounding-boxes {gi} in our case) and their
poses {pi} as input, and outputs a Boolean value indicating
whether the input objects satisfy the relationship R. Simi-
larly, the generative model fR is a function that takes the
static properties of kR objects {gi} and produces samples of

horizontally_aligned

(a) Generating synthetic data.

Constraint Diffusion Model

(b) Training constraint diffusion model .

Shape Encoder t

Pose Encoder

Diffusion Step!! !" !#

"! "" "#

#! $##"

%! %" %#

For each abstract relationship …

Fig. 3. Training a single constraint diffusion model involves a two-stage
process. First, for every abstract relationship listed in Table IV, we generate
a synthetic dataset based on predefined rules. Then, we train a relation-
specific diffusion model that can draw samples of object poses that satisfy
the relationship.

{pi} from the distribution3 qR (p1, . . . , pkR | g1, . . . , gkR) /

[hR (g1, . . . , gkR , p1, . . . , pkR)], where [·] is the indicator
function. In general, R (and therefore the associated hR and
fR) can be a set-based function and, therefore, may have a
variable arity, in which case kR = ?.

Grounding graph. Given the library of abstract spatial re-
lationships R, we can encode a desired spatial arrangement
of an object set O as a graph of ground spatial relations,
G = {ri(oi1, . . . , o

i
ki
)}i where each ri 2 R is a relationship

(such as horizontally-aligned), ki is the arity of ri, and
oi1, . . . , o

i
ki

are elements of O. The objective is to produce
a set of poses P = {pi}, such that, for all elements
(R, (o1, . . . , okR)) 2 G, hR(g1, . . . gkR , p1, . . . , pkR) is true,
where gi is the corresponding shape of oi.

We can interpret (P,G) as a graph of constraints. Based on
the probabilistic distribution specified with all relationships
in R (i.e., uniform distributions over allowable assignments),
then (P,G) can also be interpreted as a factor graph, speci-
fying a joint distribution over values of P . This will be our
inference-time objective.

Classifying spatial relationships Since all relationships used
in our examples are unambiguously defined based on sim-
ple geometric transformations (e.g., by comparing the 2D
coordinate of objects in a canonical table frame), we use a
small set of rules to construct the classifier function hR. We
include the details of the rules in the appendix C. They could
instead be learned in conjunction with the generative models
for relationships that are defined through examples only.

Generating spatial relationships. One straightforward ap-
proach to the overall problem would be to hand-specify fR
for each relationship type and use standard non-linear opti-
mization methods to search for P . There are two substantial
difficulties with this approach. First, we may want to extend to
relationship types for which we do not know an analytical form
for f , and so would want to acquire it via learning. Second, the
optimization problem for sampling assignments to P given a

3In practice, we always constrain the value range of pi to be within [0, 1]⇤;
therefore, this distribution is properly defined.

ground graph representation (P,G) is highly non-convex and
hence very difficult, and the standard method would typically
require a great deal of tuning (e.g., of the steepness of the
objective near the constraint boundary).

For these reasons, we adopt a strategy that is inspired
by Yang et al. [33], which is 1) to pre-train an individual
diffusion-based generative model for each relationship type
R 2 R and 2) to combine the resulting “denoising” gradients
to generate samples of P from the high-scoring region. One
significant deviation from the method of Yang et al. [33] is that
we train diffusion models for each relationship type completely
independently and combine them only at inference time, using
a novel inference mechanism that is both easy to implement
and theoretically sound.

Our model architecture and the training paradigm are il-
lustrated in Figure 3. Specifically, for each relationship type
R 2 R of arity k, we require a training dataset of positive
examples DR = {(g1, . . . , gk, p1, . . . , pk)} specifying satis-
factory poses {pi} for the given object shapes {gi}. Note that
for set-based relations, the examples in the training set may
have differing arity. For all relations in our library, we generate
these datasets synthetically, as described in the appendix C.

We construct a denoising diffusion model [9] for each rela-
tionship R where the distribution qR(p1, . . . , pk | g1, . . . , gk)
maximizes the likelihood {(g1, . . . , gk, p1, . . . , pk)}. We de-
note this distribution as qR(p | g) for brevity, where p and
g are vector representations of the poses and the shapes,
respectively. We learn a denoising function ✏R(p, g, t) which
learns to denoise poses across a set of timesteps of t in
{1, . . . , T}:

LMSE = (p,g)⇠DR,✏⇠N (0,I),t⇠U(0,T)h��✏� ✏R(
p
↵̄tp+

p
1� ↵̄t✏, g, t)

��2
i
,

where t is a uniformly sampled diffusion step, ✏ is a sample
of Gaussian noise, and ↵̄t is the diffusion denoising schedule.
In the case that R has fixed arity, the network ✏✓ is a multi-
layer perceptron (MLP); however, when it is set-based, we
use a transformer to handle arbitrary input set sizes. Details
of these networks are provided in the appendix D.

The denoising functions {✏R(p, g, t)}t=0:T represent the
score of a sequence of T individual distributions, {qtR(p |

g)}t=0:T , transitioning from q0R(p | g) = qR(p | g) to
qTR(p | g) = N (0, I). Therefore, to draw samples with the
diffusion process, we initialize a sample pT from N (0, I)
(i.e. a sample from qTR(·)). We then use a reverse diffusion
transition kernel to construct a simple pt�1 from distribution
qt�1
R (·), given a sample pt from qtR(·). This reverse diffusion

kernel corresponds to:

pt�1 = Bt(pt � Ct✏R(pt, g, t) +Dt⇠), ⇠ ⇠ N (0, I) (1)

where Bt, Ct, and Dt are all constant terms and ✏R(pt, g, t)
is our learned denoising function. The final generated sample,
p0 corresponds to a sample from q0R(·) = qR(·) and is our
final generated sample.

B. Pose Generation via Compositional Diffusion Models
In a single diffusion model, we can generate new samples

from the learned distribution by sampling an initial pose pT ⇠

N (0, I), and then repeatedly applying the learned transition
kernel, sequentially sampling objects qt�1

R (·) until we reach
p0, which is a sample from the desired distribution.

However, in the composed diffusion model setting, our
target distribution is defined by an entire factor graph, and
we wish to sample from a sequence of product distributions
{
Q

R2G qtR(p | g)}t=0:T starting from an initial sample pT

drawn from N (0, I). For brevity, we refer to
Q

R2G qtR(p | g)
as qtprod(p | g)4. While it is tempting to use the reverse
diffusion kernel in Equation 1 to transition to each distribution
qtprod(p | g), we do not have access to the score function for
this distribution [6].

We can instead transition between distributions by using
annealed MCMC , where we essentially use the composite
score function

P
R ✏R(pt, g, t) across factors as a gradient for

various MCMC transition kernels to transition from qtprod(p |

g) to qt�1
prod (p | g). Du et al. [6] suggested a set of MCMC

kernels to use in this process, which requires substantial extra
work to find hyperparameters to enable accurate sampling.
We observe (and proved in Appendix A) that a very simple
variant of the ULA sampler can be implemented by using the
same parameters as the reverse kernel in Equation 1 on the
composite score function

p0
t = pt � Ct

X

R

✏R(pt, g, t) +Dt⇠, ⇠ ⇠ N (0, I),

where Ct and Dt correspond to the same constant terms
previously defined. Note, however, that this is not the reverse
sampling kernel needed to transition directly from qtprod(p | g)
to qt�1

prod (p | g) as this requires a different score function [6],
but rather a MCMC sampling step for qtprod(p | g).

Our variant of the ULA sampler allows for a simple imple-
mentation for sampling from composed diffusion models. We
can directly compute a composite score function and apply the
reverse diffusion step with this score function at a fixed noise
level as running one step of MCMC at a distribution qtprod(·)
Therefore, we can start with a random sample from N (0, I)
and then repeatedly run M reverse diffusion step at each noise
level to generate a final sample from q0prod(·).

C. Abstract Relationship Generation via Program Induction
Now that we have a module for going from a ground

graph description into object poses, we further generate graph
descriptions G using a large language model in this section.
As shown in Figure 4, our approach involves a two-stage
generative process using the LLM. At the training stage, we
synthesize a task family rule-based program that captures
patterns for object arrangements. This program comprises

4Here we used a simplified notation. Each relation g 2 G is actually a
tuple of

�
R, (o1, . . . , okR

)
�
. It selects a particular relation R and s subset of

objects to which to apply it. Thus, the corresponding distribution qg should
be defined as qR(pg

| gg) = qR(p1, . . . , pkR
| g1, . . . , gkR

). For brevity,
we used

Q
R2G qR(p | g) to denote the composite distribution.

������������������������

7DVN�)DPLO\�6NHWFK

6HWXS�5XOH�,QGXFWLRQ�3URPSW

��7UDLQLQJ�([DPSOHV

1RYHO�,QVWUXFWLRQ�	�2EMHFWV�

�D��3URJUDP�LQGXFWLRQ�
�E��9DULDEOH�ELQGLQJ�DQG�SURJUDP�H[HFXWLRQ�

WR�REWDLQ�WKH�JURXQGLQJ�JUDSK�

o�$�4�0+�
��./0�4�
� .&`p

o�$�4�0+�
��./0�4�
� .&`p

o�$�4�0+�
��./0�4�
� .&`p

³7LG\�XS�D�
VWXG\�GHVN�´
³7LG\�XS�D�
VWXG\�GHVN�´

�����������������������

0HVV\�7DEOH ³3OHDVH�VHW�XS�D�VWXG\�
GHVN�WKDW
V�VXLWDEOH�
IRU�ZRUNLQJ�RQ�P\�
FRPSXWHU�´

7DVN�)DPLO\�3URJUDP��

*URXQGLQJ�*UDSK�RI�5HODWLRQVKLSV�

) �-f���&f �" t(*)$/*-u_
) �-f!-*)/f �" t& 4�*�-�u_
���&f#�'!t'�(+u_
' !/f*!t& 4�*�-�_�(*0. u_
�'$") �f$)f#*-$5*)/�'f'$) t
��& 4�*�-�_�(*0. _�(0"
u_
```

Fig. 4. Abstract relationship generation through rule induction involves
two phases. Initially, in the program induction phase, we employ an LLM
to create a “setup” rule-based program from a few training examples and a
high-level task-family sketch defined by humans. This program contains rules
and patterns for various subproblems, but it has unbound variables (i.e., the
actual objects and instructions are not specified yet). In the second phase, with
a new instruction and a list of test objects, the LLM binds these variables to
the induced program to create an executable Python program. This executable
Python program is then used to generate the final set of abstract spatial
relationships as a ground graph.

GHI�VWXG\BGHVNBOD\RXW�LQVWUXFWLRQ��REMHFWBOLVW��
����,QIHU�WKH�PDLQ�SXUSRVH�GULYHQ�GHYLFHV
��PDLQBGHYLFHV� �H[WUDFWBPDLQBGHYLFHV�LQVWUXFWLRQ��REMHFWBOLVW�

����&DWHJRUL]H�GHYLFHV�EDVHG�RQ�WKHLU�IXQFWLRQ
��LQSXWBGHYLFHV��RXWSXWBGHYLFHV��,2BGHYLFHV� �
����FDWHJRUL]HBPDLQBGHYLFHVBEDVHGBRQBIXQFWLRQV�PDLQBGHYLFHV�

����,QSXW�'HYLFHV�3ODFHPHQW
����$VVRFLDWH�LQSXW�GHYLFHV�ZLWK�WKHLU�UHODWHG�REMHFWV
��DVVRFLDWHGBREMHFWV� �DVVRFLDWLQJBREMHFWV�LQSXWBGHYLFHV��
����REMHFWBOLVW�
����)RU�LQSXW�GHYLFHV��SODFH�WKHP�QHDU�WKH�IURQW�HGJH
��ORFDWHBLQSXWBGHYLFHVBDQGBWKHLUBDVVRFLDWHV�LQSXWBGHYLFHV��
����DVVRFLDWHGBREMHFWV�

����2XWSXW�'HYLFHV�3ODFHPHQW
����$VVRFLDWH�RXWSXW�GHYLFHV�ZLWK�WKHLU�UHODWHG�REMHFWV
��DVVRFLDWHGBREMHFWV� �DVVRFLDWLQJBREMHFWV�RXWSXWBGHYLFHV��
����REMHFWBOLVW�
����)RU�RXWSXW�GHYLFHV��SODFH�WKHP�QHDU�WKH�EDFN�HGJH
��ORFDWHBRXWSXWBGHYLFHVBDQGBWKHLUBDVVRFLDWHV�RXWSXWBGHYLFHV��
����DVVRFLDWHGBREMHFWV�
�����������
����,QSXW�DQG�2XWSXW�'HYLFHV�3ODFHPHQW
����$VVRFLDWH�,2BGHYLFHV�ZLWK�WKHLU�UHODWHG�REMHFWV
��DVVRFLDWHGBREMHFWV� �DVVRFLDWLQJBREMHFWV�,2BGHYLFHV��
����REMHFWBOLVW�
����)RU�,2BGHYLFHV��SODFHG�WKHP�DW�WKH�FHQWHU
��ORFDWHB,2BGHYLFHVBDQGBWKHLUBDVVRFLDWHV�,2BGHYLFHV��
����DVVRFLDWHGBREMHFWV�
��
����5HPDLQLQJ�2EMHFWV�3ODFHPHQW
��ORFDWHBWKHBUHPDLQLQJBREMHFWVBEDVHGBRQBFRPPRQVHQVH�REMHFWBOLVW��

�E��3URJUDP�LQGXFWLRQ�E\�//0�

�F��9DULDEOH�ELQGLQJ�E\�//0�DQG�SURJUDP�
H[HFXWLRQ�

��([WUDFW�PDLQ�GHYLFHV�EDVHG�RQ�XVHU�LQVWUXFWLRQ
GHI�H[WUDFWBPDLQBGHYLFHV�XVHUBLQVWUXFWLRQ��
REMHFWBOLVW��
����0DLQ�GHYLFHV�DUH�WKRVH�WKDW�DUH�H[SOLFLWO\�
PHQWLRQHG�IRU�WKH�WDVN
����,Q�WKLV�FDVH��ODSWRS�DQG�QRWHSDG�DUH�WKH�ZRUN�
HVVHQWLDO�GHYLFHV
��PDLQBGHYLFHV� �>REM�IRU�REM�LQ�REMHFWBOLVW�LI�
REM�LQ�>�ODSWRS����QRWHSDG�@@
��UHWXUQ�PDLQBGHYLFHV

��([WUDFW�PDLQ�GHYLFHV�EDVHG�RQ�XVHU�LQVWUXFWLRQ
GHI�H[WUDFWBPDLQBGHYLFHV�XVHUBLQVWUXFWLRQ��
REMHFWBOLVW��
����([DPSOH�RXWSXW��>�ODSWRS����QRWHSDG�@
����7KLV�IXQFWLRQ�FDQ�XWLOL]H�//0�WR�SDUVH�XVHU�
LQVWUXFWLRQV�DQG�LGHQWLI\�PDLQ�GHYLFHV�
��SDVV

�D��+XPDQ�FUDIWHG�SURJUDP�VNHWFK�IRU�VWXG\�GHVNV�

,QIHUHQFH�WLPH��JLYHQ�D�QHZ�
LQVWUXFWLRQ�DQG�DQ�REMHFW�OLVW�

Fig. 5. Example process of using an LLM to instantiate a program sketch.
Sub-figure (a) presents an example of the initial program sketch. We provide
this program sketch, along with five training instances, to the LLM. The LLM
then creates a rule-based program, summarizing the common patterns in the
form of code comments and/or templates, but with unbound variables, as
illustrated in (b). Finally, given new objects and instructions, the LLM binds
these variables to the induced program and generates an executable Python
program. This program is then used to generate the object grounding graph.
An example of an executable Python program with variable bindings during
inference time is depicted in (c).

detailed comments and code templates with unbound variables,
as the specific objects and instructions are not yet defined. The
synthesis process uses a small set of training examples, D,
to instantiate a provided sketch. During the inference stage,
given a new set of objects O and a task instruction desc, we
bind the actual variables to the induced program, producing
an executable Python program. This script is then executed to
generate the ground relationship graph.

Recall that the training examples only record object poses,
these numerical values cannot be effectively used by the LLM
to infer abstract relationship patterns. Therefore, we need to
“translate” the pose information in training examples D into



a set of active abstract relationships. To do this, for each data
point in the training set (descd,Od,Pd) 2 D, we compute
the set of primitive relationships that hold by applying the
classifier hR for each abstract relationship type R 2 R, to
each subset of objects in Od. We use a string encoding of all
active relationships to describe each example scene.

Program Sketch. Our relationship generation procedure
adopts a hierarchical program synthesis framework. It is
based on a human-defined, task-family-specific sketch, with
an example shown in Figure 5. Each sketch includes several
functions with meaningful names, signatures, and descriptions,
organized in a sequence that outlines the steps to solve the
complex task. The sketch is crucial for generating abstract
relationships. It acts as a guide that helps the LLM generate
object relationships step-by-step. With this strong guidance,
the LLM can create task-family-specific rule-based program
from just five examples. Instead of directly regressing the
final relationship proposals on these five training examples,
we use the examples mainly to instantiate the subroutines in
the sketch and to write detailed comments. Such high-level
sketches decompose the generation task into four types of
subroutines: 1) extracting the task relevant information from
the instruction (e.g., number of diners), 2) categorizing objects
into groups (e.g., finding all input devices to a computer), 3)
generating arrangements for the objects within each group(e.g.,
all input devices), and 4) generating arrangements for objects
among groups. These subroutines usually require only a single
“step” of reasoning, such as directly extracting a number
from the instruction or generating object arrangements for a
smaller subset of the objects. In this work, we represent the
sketch in Python-like syntax, but in future work, it would be
important, like in Zelikman et al. [35], to accept sketches in
natural language and convert them into Python or a simpler
language such as their Parsel. In practice, we follow the four
subroutines and manually decompose the prediction task into
7-10 functions; we provide the sketches for the three task
families we study in this work in the appendix B. To add
a new task family, such as setting up for a Scrabble game,
it is only necessary to provide a sketch and a few example
set-ups. Furthermore, it is crucial to note that this high-
level sketch does not contain concrete implementations for
any subroutines; we will prompt the LLM, given the training
examples, to solve each subproblem.

Program Induction. Given the sketch and training examples,
we query the LLM to generate a rule-based program. This
program comprising rules and patterns for each subproblem,
but with unbound variables (i.e., the actual objects and in-
structions are not yet specified). Specifically, the program
encapsulates the rules associated with each function in the
form of code comments and templates. For example, it may
include instructions for identifying the key object in a study
desk setup task. During the rule induction stage, we input
the textual descriptions of the training examples, which are
detailed in terms of their spatial relations, to the LLM. We
then prompt the LLM to summarize the patterns in these ex-

amples into either comments or code templates with unbound
variables. After the rule induction stage, we obtain a program
with comments that summarizes the patterns derived from the
training examples. Examples of a sketch and a resulting LLM-
generated program are illustrated in Figure 5a and b.

Variable Binding and Program Execution. At performance
time, given a new set of objects Od, task description descr, we
first use the LLM to bind these variables to the induced pro-
gram. This process incorporates the contextual information to
generate an executable Python program. Then, we execute the
program to return the set of functional abstract spatial relation-
ships. Specifically, we prompt the LLM to read the test instruc-
tions desc and the object names in O, and fill in scene-specific
details for each program. An example of an executable pro-
gram with variable bindings, extract_main_devices, is
shown in Figure 5c: the LLM generates a list of key objects
for the new scene and incorporates it into a return statement.
To generate the final set of relationships among objects, we
simply execute this program with variable bindings, which
now include the scene-specific comments and implementation,
as well as the task description to the LLM, to generate the list
of relationships.

Empirically, we have found that LLM-generated relation-
ships often suffer from inconsistency or incompleteness. In-
consistency arises when the LLM proposes several relation-
ships that cannot be simultaneously satisfied. Incompleteness
emerges when the LLM does not provide sufficient informa-
tion to predict the placement of a target object. To address
these issues, we employ an iterative self-reflection process
to refine the initial programs generated by the LLM. At
each refinement iteration, the input to the LLM includes
the task inputs, the fully instantiated programs generated by
the rule instantiation step, and its execution result, which is
a set of abstract spatial relationships. We then instruct the
LLMs to compose two language summaries: one describing
the desired scene configuration based only on the task inputs,
and the other describing the scene configuration as inferred
from the program execution results. Next, we prompt LLM
to identify inconsistency and incompleteness between two
language summaries and fix the instantiated setup rules. We
include all detailed instructions and prompts to the LLM in
the appendix B.

IV. EXPERIMENTS

We evaluated our method in three scene types: study desks,
dining tables, and coffee tables. They involve different types
of objects, different aesthetic patterns, and different types of
human needs (e.g., using a laptop vs. paper and pencil, formal
dining vs. casual dining). They also progressively increase in
scene complexity: the study desk has the fewest objects and
important relationships, and the dining table features the most.
We generated each scene with household items that commonly
appear in the particular scene type. There are in total 15
distinct tasks created for each environment: 5 for training and
10 for evaluation. We include the training and testing examples



Fig. 6. Illustration of three scene types (before and after). The after-scene
configuration is generated by SetItUp.

in the appendix F. Figure 6 shows examples of each scene type
and the final object arrangements generated by SetItUp.

We compare SetItUp to several baselines according to the
following criteria: How do different models perform across
various aspects of the arrangement task? How does our neuro-
symbolic design compare with monolithic neural networks
or straightforward large language model predictions? Finally,
how do different models generalize to novel scenarios involv-
ing unseen instructions and objects?

A. Baselines

We have implemented two baselines and an ablation varia-
tion of our model. Implementation details are included in the
appendix E.
End-to-End diffusion model: we implement an end-to-end
diffusion model for language-conditioned object arrangement,
inspired by StructDiffusion [18]. We trained the model using
a combination of the same synthetic data and 15 tidy scene
examples (5 per scene type) as our model. At test time,
it directly generates object poses based on the language
instructions and object shapes.
Direct LLM Prediction: This baseline directly leverages a
large language model (LLM) to predict test object poses, in-
spired by Tidybot [30]. It is conditioned on 15 given examples
(5 for each scene type), as well as the object categories and
shapes.

LLM-Diffusion: This model is a simplified variant of our
approach, omitting the program sketch, rule induction, and
iterative self-reflection mechanisms. It directly prompts an
LLM to generate abstract object relationships and employs
the same diffusion-model-based inference for grounding.

B. Evaluation Metrics
A functional object arrangement must meet several criteria:

physical feasibility (i.e., being collision-free), functionality
(i.e., serving the intended purpose as per human instructions),
and overall convenience and aesthetic appeal (i.e., neat ar-
rangement with alignments and symmetries). While physical
feasibility and functionality can be objectively evaluated using
rule-based scripts, the subjective nature of convenience and
aesthetic appeal precludes such fixed evaluations. Therefore,
we employ both rule-based auto-grading and human experi-
ments to evaluate models.

Physical feasibility: We define the physical feasibility score
of an arrangement as the proportion of collision-free objects
in the final layout using a 2D collision detector.

Basic functionality: This measures the proportion of func-
tional relationships satisfied in the final scene configuration.
For each scene, we use a set of manually defined rules to
generate the basic functional relationships, including con-
straints that key objects (e.g., the utensil in a dining table
setting) are within reach of the user (The user position(s)
is predetermined), unobstructed, and arranged to fulfill their
intended function (e.g., left-handedness).

Aesthetics, convenience, and other preferences: We conduct
a human evaluation with 20 graduate students. Each participant
evaluates 30 scenes generated by either our method or a
baseline, assigning a score from 1 to 5 based on a set of
criteria. Table II presents the grading criteria. We report the
average score for each method across every scene type. For
ease of evaluation, we rendered the 2D object poses using
PyBullet [2], a physical simulator. It is important to note that
the 3D models of the objects were not used in any of the
methods for proposing object poses.

C. Results
Table III shows the overall performance of all models across

three scene types and three evaluation metrics. Overall, our
model SetItUp consistently outperforms all baselines, achiev-
ing a nearly perfect collision-free rate (indicating physical fea-
sibility) and recovering over 80% of the relationships related to
basic functionalities. Additionally, it consistently scores high
across all human evaluations, indicating its success in achiev-
ing functional and aesthetically pleasing arrangements. The
direct LLM prediction baseline and our model variant (LLM-
Diffusion) exhibit similar rankings across all three evaluation
metrics. We explore the behavior of the direct LLM prediction
baseline and compare it with SetItUp in detail in the remain-
ing part of this section. The LLM-Diffusion baseline shows
slightly better performance than the direct LLM prediction
baseline in tasks with fewer objects and constraints (i.e., the



TABLE II
GRADING GUIDELINES FOR HUMAN EVALUATION.

Points Grading Criteria

1 Functionally inadequate. The setup does not serve the in-
tended purpose in the user instruction.

2
Partial functional but inconvenient. The setup can somewhat
serve the intended purpose, but the arrangement makes the
intended activity inconvenient since it does not conform to
the user’s habits or social norms.

3
Functional, but cluttered. Key items are arranged properly to
serve the intended purpose, but the space is overcrowded and
lacks efficient organization.

4
Fully functional, lacks aesthetic appeal. Functionality and
accessibility are good, but the arrangement lacks in visual
harmony and alignment.

5
Fully functional, and aesthetically pleasing. All items are
well-placed, easy to access, and efficiently organized. Further-
more, the setup is visually appealing with proper alignment
and symmetry.

study desk) and underperforms in tasks with many objects (i.e.,
the dining table). This implies that our approach of program-
structured prompting and self-reflection-based refinement im-
proves the overall system performance. A notable failure mode
of the LLM-Diffusion variant is its frequent generation of
conflicting relationships among objects, subsequently leading
to collisions in the final scene configuration, and therefore,
resulting in low human evaluation scores. The End-to-End
diffusion model is the worst-performing method across all met-
rics and scene types, primarily due to its inability to leverage
additional commonsense knowledge (e.g., from LLMs) during
inference. This results in poor generalization to new tasks with
only a limited number of training examples. We will further
examine its generalization behavior in Section IV-D.

Figure 7 illustrates the qualitative scene arrangements gen-
erated by different methods across all three scene types. By
comparing the behavior of various methods, we aim to derive
insights into the effectiveness of abstract relationships and
compositional generative models.

Direct LLM prediction vs. Ours: the importance of ab-
stract relationships. A notable observation in Table III is
that the direct LLM prediction baseline typically achieves a
higher physical feasibility score compared to its functionality
score. This pattern becomes more apparent when compared
to the LLM-Diffusion variant of our model. By contrast, the
LLM-Diffusion variant maintains a consistent functionality
score, even though its physical feasibility score decreases
with an increase in the number of objects. Examining the
scene configurations in Figure 7 more closely, we observe that
the direct LLM prediction baseline excels at creating scenes
where objects are well-separated and aesthetically arranged
but often fails to fulfill functional requirements. For instance,
in the dining table task, while all plates and utensils are
neatly placed, the setup does not functionally accommodate
two diners. This underscores the significance of leveraging
abstract relationships as intermediate interfaces between large

language models and the physical scene; it helps the model
to better reason about important spatial relationships for the
specific task.

End-to-End diffusion model vs Ours: the importance of
compositional diffusion models. Let’s now compare the
performance of the end-to-end diffusion model with our frame-
work. It’s important to note that both models are trained on
the same dataset, including 30,000 examples of synthetically
generated single-relationship arrangements and 15 scenes of
human-labeled tidy arrangements. Looking at the dining table
task in Figure 7, we find that the end-to-end diffusion model
manages to generalize to this novel test scene to a certain
extent but fails to place all objects in a physically feasible
manner. This suggests that it struggles with reusing its training
data on individual relationship types while generating the
global scene arrangements.

A critical insight into the problem of tidy object arrange-
ment is that generating synthetic data for a single relationship
type is relatively inexpensive, whereas there is a significant
lack of scene-level annotations of paired instructions and
object arrangements. As a result, a compositional learning
framework is preferred over a monolithic one, as it can learn
individual relationships from synthetically generated single-
relationship examples and then compose them at test time.
This explicit compositional structure demonstrates a stronger
performance compared to the end-to-end diffusion baseline,
which naively mixes training data for single relationships and
scene-level arrangements directly.

D. Generalization

We further break down our quantitative results to analyze
generalization across different dimensions of the problem:
generalization to novel instructions, as well as to larger scenes
with more objects and relationships.

Generalization to novel instructions. Recall that our dataset
comprises 5 training examples and 10 test examples for each
scene type. We manually label each test example as either
a “seen instruction” (i.e., it is similar to an instruction in
the training examples) or a “novel instruction.” We then
compute the average human evaluation score for both groups
of instructions. Figure 8 presents the results.

Our SetItUp achieved the highest scores in both categories,
with no significant performance drop when generalizing to
novel instructions. By contrast, the end-to-end diffusion model
demonstrated the weakest generalization. Its monolithic model
structure, heavily reliant on the coverage of training data,
limits its generalization to new instructions. The direct LLM
prediction baseline and our ablation variant experienced sim-
ilar performance drops on novel instructions for study desks
and coffee tables. We attribute the direct LLM prediction base-
line’s poor generalization to novel instructions to its limited
capability to reason about important functional relationships
within the scene, as discussed in the previous section. Our full
model also surpasses the LLM-Diffusion baseline, highlighting



TABLE III
HOLISTIC EVALUATION OF DIFFERENT METHODS ACROSS TASK FAMILIES.

Model Physical Feasibility (%) Functionality (%) Overall Human Judgement (1-5)

Study Coffee Dining Study Coffee Dining Study Coffee Dining

End-to-End Diffusion Model 37.7±32.1 39.6±17.3 7.03±9.59 49.8±21.5 53.5±13.1 37.5±11.1 1.89±0.834 1.91±0.650 1.58±0.433
Direct LLM 63.1±27.3 58.6±22.5 63.6±20.1 59.7±11.7 53.7±22.3 56.4±15.3 3.01±0.901 2.84±1.060 2.33±0.416

LLM-Diffusion (Our ablation) 69.4±19.2 41.0±20.1 26.7±13.8 69.8±11.6 44.3±10.4 46.5±17.8 3.67±0.934 3.16±0.657 1.87±0.652
SetItUp (Ours) 95.0±10.0 98.1±3.83 95.8±6.72 94.1±6.04 84.4±13.5 91.5±13.8 4.49±0.343 4.47±0.211 4.79±0.190

³&RXOG�\RX�SOHDVH�

VHW�XS�D�VWXG\�

GHVN�ZLWK�HQRXJK�

VSDFH�WR�ZRUN�RQ�

D�ODSWRS�DQG�D�

QRWHSDG�DW�WKH�

VDPH�WLPH"�,�

SUREDEO\�QHHG�WKH�

ERRNV�IRU�TXLFN�

UHIHUHQFH�´

³&RXOG�\RX�SOHDVH�

VHW�WKH�FRIIHH�

WDEOH�IRU�WZR�

SHRSOH�WR�HQMR\�

FRIIHH"´

³3OHDVH�SUHSDUH�D�

&KLQHVH�VW\OH�

GLQLQJ�WDEOH�IRU�

WZR��ZLWK�WKH�

DUUDQJHPHQW�PDGH�

IRU�VKDUHG�PDLQ�

GLVKHV�´

&
R
II
HH
�7
DE
OH

'
LQ
LQ
J�
7D
E
OH

6W
X
G
\�
'
HV
N

(QG�WR�(QG�'LIIXVLRQ�0RGHO 'LUHFW�//0�SUHGLFWLRQ //0�'LIIXVLRQ 6HW,W8S,QVWUXFWLRQ,QLWLDO�6FHQH

Fig. 7. Illustrations of the final arrangements generated by our method and the baselines. Our model consistently generates more physically plausible,
functional, and aesthetically pleasing object arrangements.

Fig. 8. Evaluation on the generalization to novel instructions. Details on the
seen-unseen splits are provided in the appendix. Our model shows the least
amount of performance drop when generalizing to novel instructions.

the effectiveness of our rule induction steps and self-reflection-
based refinements for improved consistency and completeness.

Generalization to more objects and complex scenes. Fig-
ure 9 illustrates how the human evaluation score varies with

Fig. 9. Evaluation of the model performance on scenes with different
numbers of objects and relationships. The dashed lines depict the mean human
evaluation scores for each method. As the number of objects and active
relationships increases, our model consistently produces layouts that satisfy
human evaluators, while all baselines have noticeable performance declines.

different numbers of objects and functional relationships. Our
SetItUp (represented by dark red dots) achieves high scores



consistently across the spectrum of scene complexity. By
contrast, we see a noticeable performance drop for all other
methods as the scene becomes more complex.

We believe that the strong scalability of our model comes
from two important designs of the system. First, in the abstract
relationship generation stage, our rule induction step can
infer abstract rules about arrangement patterns and, therefore,
generalize better to larger scenes. Second, the compositional
design of our pose diffusion models allows for aggressive
generalization to scenes with a greater number of objects and
relationships, due to the composition achieved by explicitly
summing up individually trained energy functions. This is
consistent with the findings from Yang et al. [33] on how the
compositional diffusion model compared to monolithic models
in terms of generalization.

V. RELATED WORK

A. Object Rearrangement
The literature on robotic object rearrangement is extensive,

with many studies assuming that a goal arrangement is pro-
vided, detailing the precise object positions [3, 5, 8, 19, 20,
23, 24, 34, 36]. In many cases, they focus on the detailed
task and motion planning (TAMP), which comes with well-
defined locations or using goal images as references. Another
class of works involves interpreting language instructions to
determine object placement by specified relationships [7].
ALFRED introduced a multi-step, language-guided rearrange-
ment task [1, 22], inspiring solutions that merge high-level
skills. However, these methods function at a basic level,
focusing solely on placing objects in the correct receptacles
without considering the necessary functional and spatial rela-
tionships among objects for effective tabletop arrangements.
Our method differs from past approaches that require detailed
goal specifications or concrete language instructions. Instead,
we work with under-specified human instructions, inferring
the necessary abstract relationships between objects within a
scenario and determining their precise arrangements to fulfill
them.

B. Functional Object Arrangement
Organizing objects on a tabletop to reach neatly functional

arrangements is distinct from mere geometric rearrangement.
It requires that objects not only appear orderly but also fulfill
their intended purpose, often involving arranging like-function
objects together.

Several benchmarks [25, 29, 12] address room tidying and
common-sense notions of neatness at a basic level, focusing
on correctly placing items in designated containers to satisfy
semantic and aesthetic criteria [30, 21]. However, these do
not account for the spatial relationships among the objects
crucial for both functional and visual neatness on a tabletop.
Previous data-driven research, such as Structformer [17] and
StructDiffusion[18] focused on predicting object arrangements
from vague instructions. They trained a single transformer
and a diffusion model respectively to propose the placements
of the objects. Other approaches trained a single model to

predict the tidiness score [13, 28] or the gradient towards an
orderly configuration [31, 13]. These methods often rely on
extensive datasets and struggle to accommodate new object
combinations or specific user preferences. Advancing towards
a more generalizable object arrangement proposal, DALL-E-
BOT [14] employs a pre-trained VLM to propose common-
sense arrangements for open-category objects. However, its
sole reliance on a single VLM for zero-shot layout genera-
tion from object types prevents it from accommodating user
preferences and intended functional arrangements. Moreover,
it overlooks object geometries, essential for creating physically
feasible arrangements.

Our work differs by enabling zero-shot performance with
novel items in various contexts through our symbolic reason-
ing powered by an LLM and compositional diffusion model
grounding, eliminating the need for expert demonstrations.

C. Knowledge Extraction from LLM
Recent advancements have led to the development of var-

ious large language models (LLMs) capable of encoding
extensive common sense knowledge and aiding in robot
decision-making tasks [16]. These models have shown promise
in domains such as task planning for household robotics
[11, 10, 30]. Huang et al. demonstrated that iterative prompt
augmentation with LLMs improves task plan generation [10].
Meanwhile, the SayCan approach integrates affordance func-
tions into robot planning, facilitating action feasibility as-
sessment when processing natural language service requests
like “make breakfast” [11]. LLM-GROP uses LLM to suggest
object placements through prompts [4]

Despite these advancements, LLMs often fails to capture
the spatial understanding when organizing spaces, especially
as object count and environmental complexity increase. Some
research has tried to mitigate this issue by suggesting object
placements using LLMs and then grounding these suggestions
using vision-based models trained on orderly configurations
[32]. However, this method typically underperforms with novel
object arrangements due to its reliance on a single visual
model. Our approach differs markedly, as we employ composi-
tional diffusion models to anchor symbolic object relationships
accurately. The inherent compositional capabilities of these
models offer a principled method for optimizing relational
sets, enhancing our ability to handle complex geometric ar-
rangements effectively.

VI. CONCLUSION

We have proposed SetItUp, a neuro-symbolic model for
compositional commonsense object arrangements. In order to
achieve strong data efficiency and generalization, the design
of SetItUp is based on two important principles. First, we
leverage large language models as a commonsense knowledge
base to generate arrangement plans in an abstract language,
based on simple geometric relationships. Second, in order
to find global scene arrangements satisfying all proposed
relationships, we use a compositional diffusion model as a con-
tinuous constraint satisfaction problem solver. We show that by



composing individually trained diffusion models on synthetic
data at test time, our system directly generalizes scenes with
many objects and many relationships. This algorithm addresses
the data scarcity issue of large scene arrangements and has
strong extensibility. Both rule-based and human evaluations
show that our model is capable of generating more physically
feasible, functional, and aesthetic object placements compared
to both pure LLM-based and end-to-end neural generative
model baselines.

ACKNOWLEDGMENTS

This research is supported in part by the National Research
Foundation (NRF), Singapore and DSO National Laboratories
under the AI Singapore Program (AISG Award No: AISG2-
RP-2020-016), NSF grant 2214177, AFOSR grant FA9550-22-
1-0249, ONR MURI grant N00014-22-1-2740, and ARO grant
W911NF-23-1-0034. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the
author(s) and do not reflect the views of NRF Singapore.

REFERENCES

[1] Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg,
and Yoav Artzi. A Persistent Spatial Semantic Repre-
sentation for High-Level Natural Language Instruction
Execution. In CoRL, 2022.

[2] Erwin Coumans and Yunfei Bai. PyBullet, a Python
module for physics simulation for games, robotics and
machine learning, 2016–2019.

[3] Michael Danielczuk, Arsalan Mousavian, Clemens Epp-
ner, and Dieter Fox. Object Rearrangement Using
Learned Implicit Collision Functions. In ICRA, 2021.

[4] Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi
Zhang. Task and Motion Planning with Large Language
Models for Object Rearrangement. In IROS, 2023.

[5] Danny Driess, Jung-Su Ha, and Marc Toussaint. Learning
to Solve Sequential Physical Reasoning Problems from
a Scene Image. IJRR, 40(12-14):1435–1466, 2021.

[6] Yilun Du, Conor Durkan, Robin Strudel, Joshua B
Tenenbaum, Sander Dieleman, Rob Fergus, Jascha Sohl-
Dickstein, Arnaud Doucet, and Will Grathwohl. Reduce,
Reuse, Recycle: Compositional Generation with Energy-
Based Diffusion Models and MCMC. In ICML, 2023.

[7] Nikolaos Gkanatsios, Ayush Jain, Zhou Xian, Yunchu
Zhang, Christopher Atkeson, and Katerina Fragkiadaki.
Energy-Based Models as Zero-Shot Planners for Com-
positional Scene Rearrangement. In RSS, 2023.

[8] Walter Goodwin, Sagar Vaze, Ioannis Havoutis, and
Ingmar Posner. Semantically Grounded Object Matching
for Robust Robotic Scene Rearrangement. In ICRA,
2022.

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
Diffusion Probabilistic Models. In NeurIPS, 2020.

[10] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor
Mordatch. Language Models as Zero-Shot Planners:
Extracting Actionable Knowledge for Embodied Agents.
In ICML, 2022.

[11] Brian Ichter, Fei Xia, and Karol Hausman et al. Do as
I Can, Not as I Say: Grounding Language in Robotic
Affordances. In CoRL, 2022.

[12] Yash Kant, Arun Ramachandran, Sriram Yenamandra,
Igor Gilitschenski, Dhruv Batra, Andrew Szot, and Harsh
Agrawal. Housekeep: Tidying Virtual Households Using
Commonsense Reasoning. In ECCV, 2022.

[13] Ivan Kapelyukh and Edward Johns. My House, My
Rules: Learning Tidying Preferences with Graph Neural
Networks. In CoRL, 2022.

[14] Ivan Kapelyukh, Vitalis Vosylius, and Edward Johns.
Dall-e-bot: Introducing web-scale diffusion models to
robotics. IEEE Robotics and Automation Letters, 2023.

[15] Ranjay Krishna, Yuke Zhu, and Oliver et al. Groth.
Visual Genome: Connecting Language and Vision Using
Crowdsourced Dense Image Annotations. IJCV, 123:32–
73, 2017.

[16] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. Pre-Train,
Prompt, and Predict: A Systematic Survey of Prompting
Methods in Natural Language Processing. ACM CSUR,
55(9):1–35, 2023.

[17] Weiyu Liu, Chris Paxton, Tucker Hermans, and Di-
eter Fox. StructFormer: Learning Spatial Structure for
Language-Guided Semantic Rearrangement of Novel Ob-
jects. In ICRA, 2022.

[18] Weiyu Liu, Yilun Du, Tucker Hermans, Sonia Chernova,
and Chris Paxton. StructDiffusion: Language-Guided
Creation of Physically-Valid Structures using Unseen
Objects. In RSS, 2023.

[19] Lucas Manuelli, Wei Gao, Peter Florence, and Russ
Tedrake. kPAM: Keypoint Affordances for Category-
Level Robotic Manipulation. In ISRR, 2019.

[20] Ahmed Hussain Qureshi, Arsalan Mousavian, Chris Pax-
ton, Michael C. Yip, and Dieter Fox. NERP: Neural
Rearrangement Planning for Unknown Objects. In RSS,
2021.

[21] Gabriel Sarch, Zhaoyuan Fang, Adam W Harley, Paul
Schydlo, Michael J Tarr, Saurabh Gupta, and Katerina
Fragkiadaki. TIDEE: Tidying Up Novel Rooms Using
Visuo-Semantic Commonsense Priors. In ECCV, 2022.

[22] Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. ALFRED: A Bench-
mark for Interpreting Grounded Instructions for Everyday
Tasks. In CVPR, 2020.

[23] Anthony Simeonov, Yilun Du, Beomjoon Kim, Francois
Hogan, Joshua Tenenbaum, Pulkit Agrawal, and Alberto
Rodriguez. A Long Horizon Planning Framework for
Manipulating Rigid Pointcloud Objects. In CoRL, 2021.

[24] Anthony Simeonov, Yilun Du, Yen-Chen Lin, Al-
berto Rodriguez Garcia, Leslie Pack Kaelbling, Tomás
Lozano-Pérez, and Pulkit Agrawal. SE(3)-Equivariant
Relational Rearrangement with Neural Descriptor Fields.
In CoRL, 2023.

[25] Andrew Szot, Alexander Clegg, Eric Undersander,



Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr
Maksymets, et al. Habitat 2.0: Training Home Assistants
to Rearrange Their Habitat. In NeurIPS, 2021.

[26] U.S. Bureau of Labor Statistics. American Time Use
Survey, 2023.

[27] Pascal Vincent. A Connection Between Score Matching
and Denoising Autoencoders. Neural Comput., 23(7):
1661–1674, 2011.

[28] Qiuhong Anna Wei, Sijie Ding, Jeong Joon Park, Rahul
Sajnani, Adrien Poulenard, Srinath Sridhar, and Leonidas
Guibas. LEGO-Net: Learning Regular Rearrangements
of Objects in Rooms. In CVPR, 2023.

[29] Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and
Roozbeh Mottaghi. Visual Room Rearrangement. In
CVPR, 2021.

[30] Jimmy Wu, Rika Antonova, Adam Kan, Marion Lep-
ert, Andy Zeng, Shuran Song, Jeannette Bohg, Szymon
Rusinkiewicz, and Thomas Funkhouser. TidyBot: Per-
sonalized Robot Assistance with Large Language Mod-
els. In IROS, 2023.

[31] Mingdong Wu, Fangwei Zhong, Yulong Xia, and Hao
Dong. TarGF: Learning Target Gradient Field to Rear-
range Objects Without Explicit Goal Specification. In
NeurIPS, 2022.

[32] Yiqing Xu and David Hsu. How to Tidy Up a Table:
Fusing Visual and Semantic Commonsense Reasoning
for Robotic Tasks with Vague Objectives. arXiv preprint
arXiv:2307.11319, 2023.

[33] Zhutian Yang, Jiayuan Mao, Yilun Du, Jiajun Wu,
Joshua B. Tenenbaum, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Compositional Diffusion-Based
Continuous Constraint Solvers. In CoRL, 2023.

[34] Wentao Yuan, Chris Paxton, Karthik Desingh, and Dieter
Fox. SORNet: Spatial Object-centric Representations for
Sequential Manipulation. In CoRL, 2022.

[35] Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Good-
man, and Nick Haber. Parsel: Algorithmic Reasoning
with Language Models by Composing Decompositions.
In NeurIPS, 2023.

[36] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan
Welker, Jonathan Chien, Maria Attarian, Travis Arm-
strong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al.
Transporter Networks: Rearranging the Visual World for
Robotic Manipulation. In CoRL, 2021.


