
Robotics: Science and Systems 2024
Delft, Netherlands, July 15-July 19, 2024

1

POLICEd RL: Learning Closed-Loop Robot
Control Policies with Provable Satisfaction of Hard

Constraints
Jean-Baptiste Bouvier, Kartik Nagpal, and Negar Mehr

ICON Lab, University of California Berkeley
{bouvier3, kartiknagpal, negar}@berkeley.edu

Abstract—In this paper, we seek to learn a robot policy
guaranteed to satisfy state constraints. To encourage constraint
satisfaction, existing RL algorithms typically rely on Constrained
Markov Decision Processes and discourage constraint violations
through reward shaping. However, such soft constraints cannot
offer safety guarantees. To address this gap, we propose POLICEd
RL, a novel RL algorithm explicitly designed to enforce affine
hard constraints in closed-loop with a black-box environment.
Our key insight is to make the learned policy be affine around
the unsafe set and to use this affine region as a repulsive buffer
to prevent trajectories from violating the constraint. We prove
that such policies exist and guarantee constraint satisfaction.
Our proposed framework is applicable to both systems with
continuous and discrete state and action spaces and is agnostic to
the choice of the RL training algorithm. Our results demonstrate
the capacity of POLICEd RL to enforce hard constraints in
robotic tasks while significantly outperforming existing methods.
Code available at https://iconlab.negarmehr.com/POLICEd-RL/

I. INTRODUCTION

While reinforcement learning (RL) [52] is widely suc-
cessful [10, 44, 51], its application to safety-critical tasks
is challenging due to its lack of safety guarantees [20]. A
common approach towards capturing safety in RL is ensuring
the satisfaction of safety constraints which prevent a robot
from entering unsafe regions [12]. However, verifying that
a learned closed-loop policy never leads to any constraint
violation is in general a nontrivial problem. To remedy this
shortcoming, safe RL has mostly relied on reward shaping to
penalize the policy for constraint violations [12, 27, 37]. At a
high level this approach corresponds to imposing soft safety
constraints and does not provide any guarantees of constraint
satisfaction by the closed-loop system [27]. However, for many
safety-critical tasks, like human-robot interaction, autonomous
driving [45], or Airborn Collision Avoidance Systems [34],
such safety guarantees are paramount and require maintaining
inviolable hard constraints in closed loop with the learned
policy.

In this paper, we seek to learn a robot control policy guar-
anteed to satisfy an affine state constraint in a deterministic
but black-box environment. The state space region where this
constraint is not satisfied corresponds to an unsafe area that
must be avoided by the robot. Our key insight is to transform
the state space surrounding this unsafe area into a repulsive
buffer region as shown in Fig. 1. This buffer is made repulsive
by learning a policy whose actions push the robot state away

Environment

Cs > d
v1 v2

v4v3

B

Cs
Cs ≥ d

Cs ∈ [d− r, d]

Cs ≤ d− r

Fig. 1: Schematic illustration of POLICEd RL. To prevent state
s from violating an affine constraint represented by Cs ≤ d,
our POLICEd policy enforces Cṡ ≤ 0 in buffer region B (blue)
directly below the unsafe area (red). The POLICEd policy
(arrows in the environment) is affine inside buffer region B
(delimited by vertices v1, . . . , v4), which allows us to easily
verify whether trajectories can violate the constraint.

from the unsafe area. To enable analytical verification of the
repulsive character of our learned policy, we constrain its
outputs to be affine over the buffer region. This key property
allows to easily guarantee whether an affine constraint is
satisfied.

Our proposed framework is agnostic to the choice of the RL
training algorithm but relies on its convergence to guarantee
safety. Our method is applicable to both systems with con-
tinuous and discrete state and action spaces. Additionally, our
approach can accommodate black-box environments by using
a local measure of their nonlinearity, which can be numerically
estimated. To the best of our knowledge, no other work learns a
policy in such a way that the closed-loop system is guaranteed
to satisfy a hard constraint after training.

To ensure our policy produces affine outputs over the whole
buffer region, we draw from existing literature in constraining
neural network outputs. While this topic has been widely
investigated [2, 5, 19, 21, 35, 54], we build on the POLICE
algorithm proposed in [8] to constrain our learned policy.
Indeed, POLICE is capable of ensuring that a deep neural
network with continuous piecewise affine activation functions
produces affine outputs over a user-specified region. We build
on this work and develop a paradigm for enforcing hard
constraints in RL which we call POLICEd RL.

https://iconlab.negarmehr.com/
https://iconlab.negarmehr.com/POLICEd-RL/

Following this approach, we establish analytical conditions
under which our learned policy guarantees constraint satis-
faction after training. A natural follow-up question arising
from these conditions is whether they are so stringent that
no constraint-satisfying policy exist. To answer this crucial
problem, we transform the question of existence of such a
constraint-satisfying policy into a tractable linear problem. We
will then demonstrate through a number of numerical exam-
ples how our method can be implemented. Then, using a 7DOF
robotic arm, we compare the performance of our method with
a number of representative baselines and demonstrate that
our method outperforms all the baselines both in terms of
its constraint satisfaction as well as its expected accumulated
reward.

In this work, we focus on constraining only actuated states
in an effort to lighten the complexity of our theory. Such a
setting is commonly used in a wide range of safety research
such as the literature using of control barrier functions [4, 42,
59, 64] as well as safe RL [16, 33, 41, 70]. We will provide
a detailed review of these works in Section II-C.

In summary, our contributions in this work are as follows.
1) We introduce POLICEd RL, a novel RL framework that can

guarantee satisfaction of hard constraints by the closed-loop
system composed of a black-box robot model and a trained
policy.

2) We transform the question of existence of such a constraint-
satisfying policy into a tractable linear problem.

3) We demonstrate the efficiency of our proposed POLICEd
RL at guaranteeing the safety of an inverted pendulum and a
robotic manipulator in a number of simulations using high-
fidelity MuJoCo simulators [53].
The remainder of this work is organized as follows. In

Section II we provide a survey of related works. In Section III
we describe prior work [8] upon which we build our approach.
In Section IV we introduce our problem formulation along
with our framework. In Section V we establish our approach
and provide its theoretical guarantees to enforce the satisfac-
tion of affine constraints. In Section VI we demonstrate how
to implement our proposed POLICEd RL algorithm. In Sec-
tion VII we present several numerical simulations illustrating
our approach. Finally, we conclude the paper in Section VIII.

Notation: The characteristic function of a set S ⊆ Rn is
denoted by 1S . The positive integer interval from a ∈ N to
b ∈ N inclusive is denoted by [[a, b]]. Uniform sampling of a
variable x in a set X is denoted by x ∼ U(X).

II. RELATED WORKS

A. Enforcing hard constraints on neural network outputs

First, we review the literature on enforcing hard constraints
on the outputs of deep neural networks (DNNs). Adding a
post-processing layer or an extra activation function like tanh
or sigmoid to a DNN can easily bound its output. Simi-
larly, linear constraints can be enforced by projecting DNN
outputs onto a constraint set using quadratic programming
optimization layers [5]. To enforce general convex constraints,

[2] developed differentiable convex optimization layers that
can be incorporated into DNNs. However, evaluating these
optimization layers is computationally expensive, which led
to imposing linear constraint without any projection in [21]
where the constraint is built into the DNN’s architecture.
This work was recently extended to enforce affine constraints
in localized regions [8]. The main advantage of these two
works [8, 21] is the absence of computational overhead at de-
ployment where such constrained DNNs become simple mul-
tilayer perceptrons. To go beyond affine constraints, [19] used
gradient descent along equality constraints until inequality
constraints are also satisfied. Observing that gradient descent
can require numerous iterations and suffers convergence issues
prompted a more efficient method for hard convex constraint
enforcement through the offline computation of feasible sets
in [54]. In a concurrent work, [35] built DNNs whose outputs
satisfy linear and quadratic constraints without solving any
optimization problem in the forward pass. All these works
enforce constraints on DNN outputs only and do not consider
the satisfaction of hard constraints by a trained policy.

B. Constraints in reinforcement learning

The most common approach to enforce constraints in RL
adopts the framework of constrained Markov decision pro-
cesses (CMDPs) [3]. CMDPs encourage policies to respect
constraints by penalizing the expectation of the cumulative
constraint violations [37]. Numerous variations of this frame-
work have been developed such as state-wise constrained
MDP [68], constrained policy optimization [1], and state-
wise constrained policy optimization [70]. These approaches
belong to the category of soft constraints as the policy is
only encouraged to respect the constraint and provides no
satisfaction guarantees [27]. This category also encompasses
work [42] where a control barrier transformer is trained to
avoid unsafe actions, but no safety guarantees can be derived.

A probabilistic constraint comes with the guarantee of
satisfaction with some probability threshold [12] and hence
ensures a higher level of safety than soft constraints as shown
red in Fig. 2. For instance, [30] derived policies having a
high probability of not violating the constraints by more
than a small tolerance. Using control barrier functions, [14]
guaranteed safe learning with high probability. Since unknown
stochastic environments prevent hard constraints enforcement,
[59] proposed to learn generative model-based soft barrier
functions to encode chance constraints. Similarly, by using
a safety index on an unknown environment modeled by
Gaussian processes, [69, 33] established probabilistic safety
guarantees.

The focus of our work is at the third safety level described
in [12] and illustrated in Fig. 2. This level corresponds to
inviolable hard constraints. Works [16, 47] both learned safe
policies thanks to a differentiable safety layer projecting any
unsafe action onto the closest safe action. However, since these
safety layers only correct actions, a precise model of the robot
dynamics model must be known, which is typically unavailable
in RL settings. This limitation is also shared by [49, 63],

Fig. 2: The three categories of constraint satisfaction with
increasing guarantees of satisfaction.

which require some knowledge of the robot dynamics model
to compute either backward reachable sets [49] or control
barrier functions [63]. To circumvent any knowledge of the
robot dynamics model, [67] used an implicit black-box model
but is restricted to collision avoidance problems in 2D. To
avoid these limitations, [41, 48, 64] learn safety certificates.
However, these methods used barrier function approximators
and hence cannot guarantee constraint satisfaction.

To sum up, our work differs from all these works as we
enforce inviolable hard constraints on robot trajectories in
closed-loop with a learned control policy while exclusively
using a black-box model of the robot dynamics.

C. Relative degree of constraints

The relative degree of constraints is an important notion
in safe RL deserving some introduction. The relative degree
of a constraint describes how many times a constraint needs
to be differentiated before a control input appears in its
expression. For instance, a position constraint has relative
degree 1 for a velocity-controlled robot, but relative degree
2 for an acceleration-controlled robot. The higher the relative
degree, the more inertia the constraint has and the more
anticipation is required to respect it.

Control barrier functions (CBFs), one of the most common
tools to enforce constraints, require constraints of relative
degree 1 [4]. Only recently have CBFs been specifically ex-
tended to handle constraints of higher relative degrees with, for
instance, exponential CBFs [46], generalized CBFs [40], and
high order CBFs (HOCBF) [62]. However, these CBF methods
require knowledge of the robot dynamics model, which is typi-
cally not available in RL. To address this limitation, learning a
CBF is a prevalent approach in safe RL [42, 48, 59, 64]. These
works still choose to focus on constraints of relative degree
1 as do most of the safe RL literature [16, 33, 41, 70]. We
follow this common approach and choose to study constraints
of relative degree 1 in this work.

D. Black-box safety with control theory

While CBFs are prevalent in safe RL [42, 48, 59, 64], other
approaches backed by control theory have also investigated
safety in black-box RL. Most notably, model predictive control
(MPC) is particularly well-suited to bring safety guarantees to
RL settings [29]. MPC schemes predict safe and optimal con-
trol inputs in a receding-horizon fashion by using a model of
the dynamics to anticipate their behavior [29]. Implementing
MPC for black-box systems typically requires learning either a
robust [6, 18] or stochastic [39] model of the dynamics. Then,
the theory of robust [9] and stochastic control [56] can provide
safety guarantees despite the uncertainty or disturbances in
the learned models [29]. Similarly to CBFs, MPC can also
serve as a safety filter to enforce constraints on learned
policies [29, 57]. While robust control tends to be overly
conservative in practice [58] and stochastic MPC offers limited
safety guarantees [43], the main limitation of black-box MPC
is the unavoidable and notoriously computationally difficult
receding-horizon optimization problem to be solved at each
time step [29].

More closely related to this work is the literature on optimal
control of constrained piecewise affine systems [15]. Indeed,
nonlinear dynamics can be locally approximated as piecewise
affine to develop robust controllers with provable performance
guarantees [24, 28] while enforcing linear temporal logic
specifications [31]. However, these works assume knowledge
of the robot dynamics.

III. PRIOR WORK

In this section, we review prior work [8] upon which we
build our approach. The POLICE algorithm [8] utilizes the
spline theory of DNNs [7] to modify the training process of a
DNN by guaranteeing that the DNN outputs are strictly affine
within a user-specified region as shown in Fig. 3.

Fig. 3: Classification task of orange versus purple by a learned
decision boundary (red) which is required to be affine inside
the black square. POLICE [8] guarantees the DNN is affine
in the region of interest.

More specifically, consider a DNN represented by a function
fθ : Rd0 → RdL composed of L layers of width d1, ..., dL
defined as fθ := f

(L)
θL

◦ . . . ◦ f
(1)
θ1

. Let layer i ∈ [[1, L]] take
the form f

(i)
θi

(x) = σ
(
W (i)x + b(i)

)
, where σ is a pointwise

activation function, W (i) ∈ Rdi×di−1 is a weight matrix, and
b(i) ∈ Rdi is a bias vector. The layer parameters are gathered
into θi := {W (i), b(i)} while the later parameters themselves
are gathered as θ := {θ1, . . . , θL}.

The framework of [8] assumes that nonlinearities σ are
continuous piecewise affine functions such as (leaky-)ReLU,

absolute value or max-pooling. This assumption is common
in the field of DNN verification [13, 60, 65, 66].

Under this assumption, fθ is a composition of affine func-
tions W (i)x+b(i) and piecewise affine functions σ. As a result,
the DNN fθ itself is also piecewise affine. Hence, we can
partition input space Rd0 into M regions Rj , j ∈ [[1,M]],
over which fθ is affine. The nonlinearities of fθ occur at the
boundaries between regions Rj . Then,

fθ(x) =

M∑
j=1

(
Djx+ ej

)
1x∈Rj , (1)

where Dj ∈ RdL×d0 , and ej ∈ RdL are per-region slope
and offset matrices, and regions Rj ⊆ Rd0 are such that⋃M

j=1 Rj = Rd0 . These regions Rj are defined by their
characteristic functions 1x∈Rj

. The formulation of (1) is
discussed at length in [55], which also describes how to
compute regions Rj and matrices Dj and ej based on the
parameter vector θ.

The POLICE algorithm [8] builds on this formulation to
impose one user-specified polytopic region Ruser into the
partition of input space Rd0 . As a result, DNN fθ becomes
affine on this specific region Ruser. This affine region is
enforced by an extra bias term bextra calculated for each layer
such that the whole region Ruser possesses the same activation
pattern. Note that standard unconstrained optimization is still
used to train the DNN. Once training is over, a POLICEd
DNN behaves similarly to a standard DNN as the affine region
enforcement is guaranteed by the stored bias of each layer.
Thus, POLICEd DNNs have no overhead at test time compared
to standard unconstrained DNNs [8].

IV. FRAMEWORK

Let us now introduce the framework of our problem of
interest. We consider a robot of state s with deterministic
dynamics modeled by a continuous function f and of form

ṡ(t) = f
(
s(t), a(t)

)
, a(t) ∈ A, s(0) ∼ ρ0, (2)

where a is the action input and ρ0 is the distribution of initial
states. The assumption of deterministic dynamics is common
in the literature of safe RL with hard constraints as exhibited
by [16, 41, 48, 49, 63, 64, 67, 70]. Let state space S be a
compact convex polytope of Rn and admissible action set A
be a compact convex subset of Rm. Similar assumptions are
adopted by [41, 49, 63]. The state of the robot is constrained
by a single affine inequality

y(t) := Cs(t) ≤ d, for all t ≥ 0, (3)

with C ∈ R1×n and d ∈ R. The robot starts from an initial
state s(0) ∼ ρ0. At every time instant t ≥ 0, the robot
observes its state s(t) ∈ S and takes an action according to its
deterministic feedback policy a(t) = µθ

(
s(t)

)
∈ A modeled

by a DNN µθ parameterized by θ. Then, the robot receives
a reward R

(
s(t), a(t)

)
. Our objective is to train policy µθ

to maximize the expected discounted reward over trajectories
generated by policy µθ while respecting constraint (3):

max
θ

G(µθ) := E
s0∼ρ0

∫ ∞

0

γtR
(
s(t), µθ(s(t))

)
dt s.t. (3), (4)

where γ ∈ (0, 1] is a discount factor. We emphasize that
constraint (3) is a hard constraint to be respected at all times.
We can now formally define our problem of interest.

Problem 1. Given:
1) black box continuous control system (2);
2) compact convex polytopic state space S ⊂ Rn;
3) compact convex admissible action set A ⊂ Rm;
4) affine hard constraint (3);
5) DNN policy µθ

(
s(t)

)
parameterized by θ;

our goal is to solve

θ∗ = argmax
θ

G(µθ) s.t. ṡ(t) = f
(
s(t), µθ(s(t))

)
,

s(0) ∼ ρ0, Cs(t) ≤ d, for all t ≥ 0.

Our approach focuses on deterministic dynamics with no
model mismatch, although it can be readily extended to uncer-
tain dynamics thanks to robust safe control [17]. Additionally,
we consider the robot dynamics model f to be an implicit
black-box, meaning that we can evaluate f but we do not have
access to the equations or analytical form of f . This is similar
to the online RL setting where f is a simulator or where f is
the actual robot.

V. CONSTRAINED REINFORCEMENT LEARNING

In this section, we establish a method to solve Problem 1.
To enforce the satisfaction of affine constraint Cs ≤ d,
we construct a repulsive buffer where Cṡ ≤ 0 around the
constraint line Cs = d as illustrated in Fig. 1. This repulsive
buffer will then guarantee that closed-loop trajectories of the
robot cannot breach the constraint. We will establish the
analytical safety guarantees of our method in this section and
then in the next section, we discuss the implementation details
of our approach.

A. Guaranteed satisfaction of hard constraints

We start by constructing a repulsive buffer in front of the
constraint violation line defined by (3). Let r > 0 be the
‘radius’ of this buffer defined as

B :=
{
s ∈ S : Cs ∈ [d− r, d]

}
. (5)

Note that any state trajectory initially verifying constraint (3),
i.e., Cs(0) ≤ d, has to cross buffer B before being able to
violate the constraint. Therefore, if buffer B cannot be crossed,
then constraint (3) cannot be violated. To design a policy µθ

incapable of crossing buffer B, we need the following result.

Lemma 1. Buffer B of (5) is a polytope.

Proof: The proof is located in Appendix A.
Then, buffer B has a finite number N of vertices gathered

in the set V
(
B
)
:=
{
v1, . . . , vN

}
.

We choose a deterministic policy modeled by a POLICEd
DNN µθ : S → A. We adopt the framework of [8] as discussed
in Section III. We assume that the activation functions of
µθ are continuous piecewise affine functions such as (leaky)
ReLU, absolute value, or max-pooling. As mentioned in
Section III, this POLICEd DNN architecture allows the user to
specify a polytopic region Ruser of the state space S where the
outputs of µθ are affine. We choose Ruser = B as illustrated
in Fig. 1.

Following (1), the affine character of µθ over region B is
equivalent to the existence of matrices Dθ ∈ Rm×n and eθ ∈
Rm such that

µθ(s) = Dθs+ eθ for all s ∈ B. (6)

Having an affine policy on B, we would like to couple
it with affine robot dynamics to obtain a simple constraint
enforcement process. However, in general, robot dynamics (2)
are nonlinear. We will thus use an affine approximation of the
robot dynamics inside buffer B using the following definition.

Definition 1. An approximation measure ε of dynamics (2)
with respect to constraint (3) and buffer (5) is any ε ≥ 0 for
which there exists any matrices A ∈ Rn×n, B ∈ Rn×m, and
c ∈ Rn such that∣∣Cf(s, a)− C(As+Ba+ c)

∣∣ ≤ ε, (7)

for all s ∈ B, and all a ∈ A.

Despite this approximation, note that we will guarantee the
satisfaction of constraint (3) with actual dynamics (2). To help
us easily compute a value for ε using system identification
techniques [38] like linear least square [25], we take advantage
of the following property of approximation measures.

Lemma 2. Given dynamics f of (2), constraint matrix C
of (3) and buffer B of (5), any ε sufficiently large is an
approximation measure in the sense of Definition 1.

Proof: The proof is located in Appendix B.
Note that intuitively, the value of ε quantifies the quality of

the approximation over buffer B of possibly nonlinear robot
dynamics (2) by affine system

ṡ(t) = As(t) +Ba(t) + c, a(t) ∈ A. (8)

We will show how to guarantee satisfaction of constraint (3)
by black-box environment (2) armed only with an approxi-
mation measure ε and without knowing matrices A, B, c or
dynamics f .

We define the safe states as Ss :=
{
s ∈ S : Cs < d

}
. We

only consider trajectories remaining in state space S, which we
define as τS

(
s0, a(·)

)
:=
{
s(t) : s(t) ∈ S and follows (2)

}
for all s0 ∈ S and adequate actions a(·) ∈ A. We can now
state our central result relating repulsive buffer B to trajectories
τS continuously respecting the constraints.

Theorem 1. If for some approximation measure ε, repulsion
condition

Cf
(
v, µθ(v)

)
≤ −2ε, (9)

holds for all v ∈ V
(
B
)
, then τS(s0, µθ) ⊆ Ss for all s0 ∈ Ss.

Proof: The intuition behind this proof is to use (9) and
approximation (7) to show that Cṡ ≤ 0 for all s ∈ B, which
in turn prevents trajectory from crossing buffer B and hence
from violating the constraint.

Since ε is an approximation measure, there exists matrices
A, B and c verifying (7). We can now extend repulsion
condition (9) from the vertices of buffer B to the whole set
B. For v ∈ V

(
B
)
,

C
(
Av +Bµθ(v) + c

)
≤
∣∣C(Av +Bµθ(v) + c− f(v, µθ(v))

)∣∣+ Cf
(
v, µθ(v)

)
≤ ε+ Cv̇ ≤ ε− 2ε ≤ −ε, (10)

where the first inequality is a triangular inequality, the second
follows from (7) and (2), and the third inequality follows
from (9). Using the fact that an affine function is uniquely
determined by its values on the vertices of a full-dimensional
polytope [26], [28], we will show that (10) is also valid all over
polytope B and not just at its vertices V

(
B
)
. More specifically,

since B is the convex hull of its vertices {v1, . . . , vN} = V
(
B
)

[26], for all s ∈ B, there exists α1, . . . , αN ∈ R such that
αk ≥ 0,

∑N
k=1 αk = 1 and s =

∑N
k=1 αkvk. Then, (6) yields

C
(
As+Bµθ(s) + c

)
= C

(
As+B(Dθs+ eθ) + c

)
= C(A+BDθ)s+ C(Beθ + c)

= C(A+BDθ)

N∑
k=1

αkvk + C(Beθ + c)

N∑
k=1

αk

=

N∑
k=1

αkC
(
(A+BDθ)vk +Beθ + c

)
(11)

=

N∑
k=1

αkC
(
Avk +Bµθ(vk) + c

)
≤

N∑
k=1

αk(−ε) = −ε,

where the inequality comes from (10) applied on each vertex
vk. For any state s ∈ B, we have

Cṡ = Cf
(
s, µθ(s)

)
≤
∣∣C(f(s, µθ(s))−As−Bµθ(s)− c

)∣∣
+ C

(
As+Bµθ(s) + c

)
≤ ε− ε ≤ 0, (12)

where we first use the triangular inequality, then (7) and (11).
Having proved (12), we will now show that it prevents all
trajectories τS(s0, µθ) from exiting safe set Ss when s0 ∈ Ss.

We prove this by contradiction. Assume that trajectory
τS(s0, µθ) ⊈ Ss for some s0 ∈ Ss. Since τS(s0, µθ) ⊂ S ,
there exists some T > 0 such that s(T) ∈ S\Ss. Then,
by definition of Ss, y(T) = Cs(T) ≥ d. Since s0 ∈ Ss,
y(0) = Cs0 < d. By continuity of the function y, there exists
a time t2 ∈ (0, T] at which y(t2) = Cs(t2) = d. Let t0 ≥ 0 be
the last time at which τS(s0, µθ) entered B, so that s(t) ∈ B
for all t ∈ [t0, t2].

Note that y(t) = Cs(t) is continuously differentiable since
dynamics (2) are continuous. Then, according to the Mean

Value Theorem [32], there exists t1 ∈ (t0, t2) such that
ẏ(t1) =

(
y(t2)− y(t0)

)
/(t2 − t0). By construction of t0 and

t2, we have t2 − t0 > 0 and y(t2) − y(t0) > 0. Therefore,
ẏ(t1) = Cṡ(t1) > 0 with s(t1) ∈ B, which contradicts
(12). Therefore, all trajectories τS(·, µθ) starting in safe set
Ss remain in Ss.

Theorem 1 guarantees that trajectories remaining in S and
steered by a(t) = µθ

(
s(t)

)
satisfy constraint (3) at all times as

long as repulsion condition (9) is satisfied. This condition (9)
guarantees that trajectories cannot cross buffer B and hence
cannot violate constraint (3).

Remark 1. In order to guarantee satisfaction of constraint (3)
through Theorem 1, we need an approximation measure ε.
In practice, we can use data-driven techniques for estimating
ε. Our safety guarantees are valid as long as our estimator
ε̃ overshoots the true ε since that will help make ε̃ an
approximation measure according to Lemma 2. 1

Theorem 1 highlights the major strength of POLICEd RL: to
ensure constraint satisfaction we only need to check whether
(9) holds at the vertices of B. Without POLICE, µθ would
not be affine over B, and repulsion condition (9) would need
to be verified at numerous intermediary points depending
on the smoothness of µθ and the size of the buffer. Such
an approach is similar to the δ-completeness guarantees of
[13, 23] and would be much more computationally intensive
than our approach.

Theorem 1 and more specifically Condition (9) implicitly
assume that the robot has access to v̇, the derivative of the
state, which is usually not the case in typical RL environments
[11]. To address this, we provide a straightforward extension
of Theorem 1 to the widespread framework of discrete-time
setting. We define the discrete-time state of the robot as

sj+1 := sj + f(sj , aj)δt, (13)

for all sj ∈ S , aj ∈ A, j ∈ N, and some time step δt > 0.
The discrete trajectory of policy µθ starting from s0 ∈ S and
remaining in state space S is defined as

τSd (s0, µθ) :=
(
s0, s1, . . .

)
∈ SN, (14)

such that sj+1 = sj + f(sj , µθ(sj))δt ∈ S for all j ∈ N.

Corollary 1. If for some approximation measure ε, the fol-
lowing discrete repulsion condition holds

Cf(sj , µθ(sj)) ≤ −2ε for all sj ∈ V
(
B
)
, (15)

with aj = µθ(sj), and buffer B is wide enough such that

max
{
C
(
sj+1 − sj

)
: sj ∈ Ss, aj = µθ(sj)

}
≤ r, (16)

then τSd (s0, µθ) ⊂ Ss for all s0 ∈ Ss.

Proof: The proof is similar to that of Theorem 1 and can
be found in Appendix C.

1However, in practice an excessively large value of ε will be detrimental
to the learning performance of µθ since repulsion condition (9) will become
harder to enforce as ε increases.

Note that condition (16) requires the buffer to be wide
enough not to be ‘jumped’ over in a single time step by the
discrete dynamics. Condition (15) makes buffer B repulsive
so that discrete trajectories τSd cannot leave safe set Ss.

B. Existence conditions

While Theorem 1 and Corollary 1 provide a way to verify
the satisfaction of hard constraint (3), they do not entirely
solve Problem 1. A natural remaining piece is the following
existence condition.

Problem 2. Under what conditions does there exist an admis-
sible policy µθ satisfying Theorem 1?

Indeed, if the conditions of Theorem 1 cannot be satisfied,
then training µθ will fail to solve Problem 1, which is why
Problem 2 is crucial. To address this issue, we first reformulate
the conditions of Theorem 1 into a tractable existence problem.

Proposition 1. Finding an admissible policy µθ satisfying
Theorem 1 is equivalent to finding a matrix Dθ ∈ Rm×n and
a vector eθ ∈ Rm which satisfy the following conditions for
all vertices v ∈ V

(
B
)

C
(
(A+BDθ)v +Beθ + c

)
≤ −ε, (17a)

Dθv + eθ ∈ A. (17b)

Proof: Following definition (6) of policy µθ, (17a) is
equivalent to (10). Similarly, a policy µθ satisfying Theorem 1
also verifies (10).

The only statement left to prove is the equivalence between
(17b) and policy µθ being admissible over buffer B. Admis-
sibility is formalized as µθ(s) ∈ A for all s ∈ B, which
combined with (6), trivially implies (17b).

Conversely, assume (17b) holds and let us prove that µθ is
admissible. Let s ∈ B. Since V

(
B
)
= {v1, . . . , vN} are the

vertices of convex set B, there exists α1, . . . , αN ∈ R such
that αk ≥ 0,

∑N
k=1 αk = 1 and s =

∑N
k=1 αkvk. Then, (6)

yields

µθ(s) = Dθs+ eθ = Dθ

(
N∑

k=1

αkvk

)
+ eθ

(
N∑

k=1

αk

)

=

N∑
k=1

αk(Dθvk + eθ).

Then, (17b) coupled with the convexity of A yields µθ(s) ∈ A
for all s ∈ B, hence completing the proof.

Proposition 1 translates the feasibility of Theorem 1 into
two sets of N linear conditions to verify. Additionally, if the
input set A is a polytope, (17b) can be simplified to a linear
existence problem. Hence, the question of the existence of a
policy µθ satisfying Theorem 1 can be answered efficiently
with linear programming. Notice that (17a) admits plenty of
solutions as long as CB ̸= 0. This observation is in fact related
to the concept of relative degree whose definition we now
formalize.

Definition 2. The relative degree γ of system (2) with out-
put (3) is the order of its input-output relationship, i.e.,
γ := min

{
r ∈ N : ∂

∂a
∂ry(t)
∂tr ̸= 0

}
.

In simpler words, the relative degree is the minimal number
of times output y has to be differentiated until input a appears.

Proposition 2. If affine dynamics (8) with output (3) have
a relative degree 1, then condition (17a) admits solutions.
Otherwise, (17a) admits solutions if and only if c∗v ≤ −ε where
c∗v := max

{
CAv + Cc : v ∈ V

(
B
)}

.

Proof: Following Definition 2 with dynamics (8) and
constraint (3), we calculate

∂

∂a

∂y(t)

∂t
=

∂

∂a

∂Cs(t)

∂t
=

∂

∂a
Cṡ(t)

=
∂

∂a
C
(
As(t) +Ba(t) + c

)
= CB.

Then, a relative degree 1 entails CB ̸= 0, i.e., there exists
j ∈ [[1,m]] such that the jth component of CB is non-zero.
Then, we choose eθ to be the zero vector of Rm except for
its jth component to be −c∗v−ε

[CB]j
, so that CBeθ = −c∗v − ε. We

also choose Dθ = 0 ∈ Rm×n. Then, for all v ∈ V
(
B
)

the
left-hand side of (17a) simplifies to

CAv − c∗v − ε+ Cc ≤ c∗v − c∗v − ε = −ε,

where the first inequality comes from the definition of c∗v .
Therefore, (Dθ, eθ) is a solution to (17a).

On the other hand, if dynamics (8) with output (3) have
relative degree larger than 1, then CB = 0, i.e., the policy
has no direct impact on output y. In that case, (17a) simplifies
to C(Av + c) ≤ −ε, i.e., c∗v ≤ −ε.

To check the existence of a policy satisfying Theorem 1, we
cannot rely solely on the hope that the constraint will enforce
itself. Thus, in practice, we need CB ̸= 0, i.e., the relative
degree of system (8) must be 1.

Since affine system (8) is only an approximation of nominal
dynamics (2), they do not necessarily have the same relative
degree. However, such a preventable discrepancy only hampers
practical implementation of Theorem 1 by rendering ε larger
than necessary. Indeed, work [61] discusses how to infer the
relative degree of a black box system from first principles.
Hence, affine approximation (8) can and should be designed
to match the relative degree of nominal dynamics (2) to make
ε as small as possible. This reasoning prompts the following
practical consideration.

Remark 2. In practice, to find a policy satisfying Theorem 1,
output (3) of system (2) needs relative degree 1.

The intuition behind Remark 2 is that the derivative of
the constrained states must be actuated to allow immediate
corrective actions. A relative degree 1 is also required by CBFs
[4] and by numerous works in constrained RL [33, 41, 42, 59]
as discussed in Section II-C.

Remark 3. Our foundational theory can be generalized in
future work to enforce multiple constraints of high relative

��� ��� ��� ��� ��
 ���

���

���

��	

���

������
���������������
�������
������

Fig. 4: State space S with arrows denoting state transitions
under POLICEd policy µθ for linear environment (18). The
affine buffer B (green) pushes states away from the constraint
line (red) before heading towards the target (cyan).

degrees by creating an affine buffer for each constraint where
the policy dissipate their inertia.

VI. IMPLEMENTATION

In this section, we demonstrate how our method can be
implemented in a continuous 2D environment where a point
mass moves according to the following discrete-time dynamics

s(t+ δt) = s(t) + a(t)δt, (18)

with actions a(t) ∈ A := [−1, 1]2, states s(t) ∈ S := [0, 1]2

and time step δt = 0.1. We assume dynamics (18) to be a
black-box from the controller’s perspective. The reward signal
is proportional to the distance between the state and a target
state located at (0.9, 0.9), as illustrated in Fig. 4.

We consider the line joining states (0.4, 0.7) to (1., 0.7) to
form an obstacle. We will guarantee that trajectories do not
cross this constraint line from below by placing our buffer
right under it, as shown in Fig. 4. Note that a policy trained to
reach the target will not cross the constraint line from above
as that would move the state away from the target as seen in
Fig. 4. Thus, we only need to prevent crossings from below.
The constraint is parameterized by C = [0, 1] and d = 0.7 in
the notations of (3), i.e., s2 ≤ 0.7 when s1 ≥ 0.4.

The first step of our approach is to estimate the size of our
buffer. To do so, we uniformly sample states s(t) ∼ U(S),
actions a(t) ∼ U(A), and the corresponding next states
s(t + δt) from (18) to be stored in a dataset D. With this
dataset we can calculate the minimal buffer radius r following
condition (16) and we find that for this setting r = 0.1, which
we can analytically verify with (18).

Following (5) we define buffer B delimited by vertices
V(B) =

{
(0.4, 0.7), (1, 0.7), (1, 0.6), (0.4, 0.6)

}
which will be

provided to our algorithm to learn a POLICEd policy µθ.
The next step is to determine an approximation measure ε

of the system’s nonlinearity. Since dynamics (18) are linear,
affine approximation (7) is exact with ε = 0.

Fig. 5: The inverted pendulum Gym environment [11] anno-
tated with cart position x, pendulum angle θ, and buffer B.

Finally, we train the POLICEd policy µθ to ensure repulsion
condition (15) holds, i.e., s2(t + δt) − s2(t) ≤ 0 for s(t) ∈
V(B). This is illustrated by the arrows pointing down in the
affine buffer of Fig. 4. As suggested in [8], once training is
completed, we create a copy κθ of the POLICEd DNN µθ,
where the POLICEd extra-bias bextra (discussed at the end of
Section III) are directly embedded into the standard bias of
κθ. Thus, copy κθ is a standard DNN without overhead.

We summarize the POLICEd RL process in Algorithm 1.

Algorithm 1 POLICEd RL

Require: Environment (13), constraint (3), transition dataset(
s, a, s′) ∼ D ⊂ S ×A× S

1: Calculate buffer radius r with (16) from dataset D
2: Determine buffer B and its vertices V(B) with (5)
3: Sample transitions (s, a, s′) ∼ D s.t. s ∈ B and use least-

square approximation to get ε from (7)
4: Train the POLICEd RL agent µθ until repulsion condi-

tion (15) holds on the polytopic buffer’s vertices V(B)
5: Copy µθ into a standard DNN κθ of identical weights and

biases increased by the POLICEd extra-bias bextra of µθ

Ensure: Trajectories τSd (s0, µθ) of (14) starting from safe
state s0 ∈ Ss do not leave safe set Ss and copied policy
κθ = µθ has no inference-time overhead.

VII. SIMULATIONS

We will now test our POLICEd RL framework through
more challenging realistic simulations to answer the following
questions:
Q1 Can POLICEd RL produce safer policies than a baseline?
Q2 Can POLICEd RL generate policies achieving higher

rewards than a baseline, while guaranteeing constraint
satisfaction?

Q3 Can POLICEd RL be expanded to higher-dimensional
systems with realistic dynamics?

A. Inverted pendulum experiment

We begin by testing POLICEd RL on the OpenAI inverted
pendulum environment [11] which uses the MuJoCo physics
engine [53]. The inverted pendulum environment has a 4-
dimensional observation space with cart position x, pendulum
angle θ, linear cart velocity ẋ, and angular velocity θ̇ as
illustrated in Fig. 5. The action space is the force applied to
the cart a proportional to ẍ.

We investigate different safety constraints to prevent the
pendulum from falling. First, we consider a constraint of
relative degree 1 where we want to enforce θ̇(t) ≤ 0 for
θ(t) ∈ [0.1, 0.2] rad to push θ away from its upper limit
θmax = 0.2 rad. With state s(t) =

(
x(t), θ(t), ẋ(t), θ̇(t)

)
, the

constraint is Cs(t) ≤ d with d = 0 and C =
[
0 0 0 1

]
. We

now need to create a buffer wide enough such that it cannot be
‘jumped’ over by the robot in a single time-step. Following (5),
we build a buffer of width r as B =

{
(x, θ, ẋ, θ̇) : x ∈

[−0.9, 0.9], θ ∈ [0.1, 0.2], ẋ ∈ [−1, 1], θ̇ ∈ [−r, 0]
}

. Buffer
B stays clear off x = ±1 since these locations cause a large
state discontinuity preventing stabilization. Following step 1 of
Algorithm 1, we uniformly sample states s ∼ U

(
S
)
, actions

a ∼ U
(
A
)
, corresponding next state s′ and we use (16) to

compute r ≈ 1.03 for action magnitudes |a| ≤ 1. To guarantee
θ̇ ≤ 0, Theorem 1 leads us to enforce θ̈ ≤ 0 for all states in
buffer B.

We can now compute an approximation measure ε from (7).
We uniformly sample states s ∼ U

(
B
)
, actions a ∼ U

(
A
)
,

we get the corresponding next state s′ and approximate ṡ ≈
(s′ − s)/δt with δt = 0.02 s which is the environment time-
step. A least-square fit following (7) yields a value ε ≈ 0.7.

Note that training to satisfy a constraint is often adversarial
to accomplishing the task, and thus often causes training
instability. Throughout our development process, we discov-
ered techniques to greatly improve training time and sample
complexity, which are further discussed in Appendix D. For
example, with the inverted pendulum scenario, we train policy
µθ by iterating over two phases. The first phase is a standard
RL training where the initial state is regularly reset either
around the origin or inside the affine buffer. Once a reward
threshold is met, the constraint training phase starts. The
state is iteratively reset to all the vertices of buffer B and
the trajectory is propagated for a single time step to evaluate
whether repulsion condition (15) holds. Only the experiences
where (15) is not verified are added to the replay memory
with negative rewards in order to promote the respect of (15).
After several rounds of these updates, the first training phase
resumes and the process begins anew until condition (15) holds
everywhere on the vertices of B and the maximal reward is
achieved. We summarize this training process in Algorithm 2.

We use Proximal Policy Optimization (PPO) [50] to learn
both a baseline and a POLICEd policy. The baseline is a
standard PPO policy that does not have the enforced affine
buffer B of the POLICEd policy. They both follow the same
training procedure described above in the same environment
where they receive identical penalties for constraint violations.
Each episode has a maximal length of 1000 time steps with a
reward of 1 if the pole is upright and 0 otherwise. The reward
curves of Fig. 6 show that both methods achieve maximal
reward.

During training we measure the proportion of buffer B
where repulsion condition (15) is satisfied and report these
proportions in Fig. 7. Since the POLICEd policy achieves
maximal reward while completely satisfying repulsion con-
dition (15) at episode 1180 it stops training, whereas Fig. 7

Fig. 6: Reward curves for the inverted pendulum (max=1000).
The solid lines correspond to the average and the shaded
regions to the 95% confidence interval over 5 runs.

Fig. 7: Relative portion of buffer B where repulsion condi-
tion (15) is respected. The baseline never succeeds in entirely
enforcing (15) hence allowing possible constraint violations.
The solid lines correspond to the average and the shaded
regions to the 95% confidence interval over 5 runs.

shows that the baseline never succeeds in enforcing (15)
over the entire buffer. Moreover, the constraint training phase
causes a large drop in the baseline rewards as seen in Fig. 6.
Our POLICEd policy guarantees the satisfaction of constraint
θ̇ ≤ 0 by enforcing repulsion condition (15), i.e., θ̈ ≤ 0.
Consequently, it guarantees that trajectories starting from
θ̇(0) < 0 will never reach any state where θ̇(t) ≥ 0.

We will now empirically evaluate the performance of PO-
LICEd RL at ensuring satisfaction of a constraint of relative
degree 2. Although our theory cannot provide any safety
guarantees, we will show that POLICEd RL performs better
and is safer than the baseline.

We want the pendulum to maintain |θ| ≤ θmax = 0.2 rad
(See Fig. 5). This position constraint is of relative degree 2
since the action (pushing the cart) only impacts directly the
angular acceleration θ̈. Our empirical evaluation consists in
resetting the state of the inverted pendulum at a variety of
initial conditions

(
θ, θ̇
)
, and seeing how often policies fail

to maintain |θ| ≤ 0.2 rad. Some initial conditions cannot be

stabilized since the controller does not have direct control
action on θ, only on θ̇. Indeed θ(δt) = θ0 + δt θ̇0 > 0.2 rad,
if θ0 = 0.2 rad and θ̇0 > 0 not matter the control action.
We present our results in Fig. 8 where we can see that the
POLICEd policy stabilizes a span of initial states much larger
than both buffer B and the ones stabilized by the baseline.

(a) Baseline (b) POLICEd
Fig. 8: Success rates for the policies to maintain |θ| ≤ 0.2 rad
for the inverted pendulum given an initial state

(
0, θ, 0, θ̇

)
.

Green: stabilized. Red: failure. The black box shows buffer
B where the POLICEd policy guarantees θ̈ ≤ 0. Position
constraint |θ| ≤ 0.2 rad is of relative degree 2. Some initial
conditions pictured here cannot be stabilized since the con-
troller does not have direct control action on θ, only on θ̇.
However, we see that our POLICEd policy maintains safety
in a larger region of the state space than the baseline.

Then, POLICED RL has shown to be empirically effective
in increasing the set of stabilizable initial conditions even
with constraints of high relative degree. Our results indicate
that both Q1 and Q2 are answered positively as POLICEd
RL produces safer policies achieving higher rewards than our
baseline in the inverted pendulum environment.

B. Robotic arm

We further showcase our method on a robotic arm with
7 degrees of freedom. To implement our approach, we rely
on the high-fidelity MuJoCo simulator [53]. We developed a
custom environment where a KUKA robotic arm aims to reach
a 3D target with its end-effector while avoiding an unsafe
region as illustrated in Fig. 9. More specifically, we define the
state of the environment s ∈ R10 as the arm’s joint angles
sjoints ∈ R7 and the X-Y-Z coordinates of the end-effector
send ∈ R3. At each timestep, the policy provides a change
in joint angles a ∈ R7. The target is kept constant across all
episodes. At the start of each episode, the starting state of the
arm is uniformly sampled from the joint space.

At each timestep, the robotic arm is assigned a reward
function R(s, a) which is composed of four terms: the straight
line distance Rd(s) between the end-effector and the target, a
bonus Rb(s, a) for reaching the target, a penalty Rinf(a) for
generating an infeasible joint state, and a penalty Runsf(s, a)
for violating the constraint.

We perform an ablation study to showcase the necessity

Fig. 9: Robotic arms tasked to bring their end-effectors to the
target (green) while avoiding the constraint surface (red). The
POLICEd method uses a buffer region (cyan). The arms are
shown in two random configurations.

of our POLICEd method to ensure both high rewards and
constraint satisfaction. To begin, we learn a POLICEd policy
using Twin Delayed DDPG (TD3) [22], an improved version
of Deep Deterministic Policy Gradient (DDPG) [36]. After
training each model, we deployed the fully-trained policy onto
500 episodes on our Safe Arm Task which is illustrated in
Fig. 9. From these episodes we collected a series of metrics
which we summarize in Table I:

1) Completion %: The percentage of episodes where the
policy reaches the target to evaluate task completion rate.

2) Completion % w/o Violation: The percentage of episodes
where the policy reaches the target without violating the
constraint, to evaluate its safety capabilities.

3) Average Reward: The average reward earned to evaluate
how efficiently the policy completes the task.

4) Average Constraint Satisfaction: The percentage of
episodes where the constraint is never violated to evaluate
the safety capabilities of the policy.

We proceeded with the ablation study by training and
evaluating variations of our initial policy where we either
removed our POLICE module or the reward penalties. We
began by training a traditional TD3 policy without our PO-
LICE module and evaluating it as described. We then switched
to a reward function without Runsf and trained a TD3 policy
without both the POLICE module and without the constraint
violation penalties. We also trained a POLICEd policy without
the penalty term in order to showcase how reward shaping is
necessary to tune the affine region of the policy to avoid the
constraint region.

While we believe ours is the first paper to provably enforce
hard constraints with black-box environments, safe RL has
produced remarkable works in soft constraints and learned
safety certificate methods. As such, we also compare our
approach with the soft constraint method Constrained Policy
Optimization (CPO) [1], as well as the learned control barrier
function approach PPO-Barrier of [64].

As seen in Table I, our POLICEd policy is the only algo-
rithm to guarantee constraint satisfaction. The soft constraint
CPO [1] and the learned safety certificate PPO-Barrier [64]
baselines provide better constraint adherence than standard
RL algorithms like TD3, but still fall far short of guaranteed

satisfaction. In comparison, our POLICEd approach has the
highest task completion percentage without violations by a
40% margin, while also being the highest reward earning
policy by nearly a margin of 3 times.

Through our ablation study, we confirm that our POLICEd
approach is necessary for constraint satisfaction, as seen by
the poor average constraint satisfaction by the TD3 and
TD3 trained without penalty policies. Furthermore, it follows
intuitively that the constraint violation penalties guide the
policy to avoid the region, a concept extensively studied in
soft constraint works [1, 27]. As expected, training without
penalizing constraint violations is vastly detrimental to the
performance of both the TD3 and POLICEd policies. In
the POLICEd case, the reward shaping is necessary for the
policy to appropriately tune the affine region to avoid the
constraint. We can now answer questions Q1, Q2, and Q3 as
the POLICEd policy achieves highest average reward while
guaranteeing constraint satisfaction even on this relatively
high-dimensional, high-fidelity robotic arm environment.

We additionally observed that our POLICEd approach ex-
hibited significantly greater sample efficiency compared to
our baseline methods. The POLICEd policy converged within
4000 episodes, each consisting of 100 steps. In contrast, CPO
frequently failed to converge even after 20,000 episodes of
the same length. While PPO-Barrier achieved convergence
within 200 iterations, these iterations encompassed numerous
episodes of uncapped length, resulting in nearly double the
number of environment samples required compared to PO-
LICEd. For additional details see Appendix E-B1.

VIII. CONCLUSION

Summary. We proposed POLICEd RL, a novel algorithm
explicitly designed to enforce hard safety constraints for a
black-box robot in closed loop with a RL policy. Our key
insight was to build a repulsive buffer around the unsafe
area with a locally affine learned policy to guarantee that
trajectories never leave the safe set. Our experiments showed
that POLICEd RL can enforce hard constraints in high-
dimensional, high-fidelity robotics tasks while significantly
outperforming existing methods.
Limitations. With Proposition 1, we can verify whether there
exists a safe POLICEd policy. However, as in standard RL,
there are no guarantees that the training will converge to this
safe policy. Moreover, in high dimensional environments, the
exponential number of vertices of buffer region B

(
2n for a

box in dimension n
)

will become computationally prohibitive.
However, once trained, a POLICEd DNN is just as fast as a
standard unconstrained DNN [8]. Finally, we would like to
point out that if the estimate of the approximation measure
ε is too low, then the safety guarantees of Theorem 1 and
Corollary 1 will not hold. We would like to investigate how
an upper bound of ε can be estimated for general high-
dimensional settings.
Future Directions. We are excited by our findings and
believe our method is only the first step towards enforcing
hard constraints on RL policy. For future work, we plan to

Models Completion % (↑) Completion %
w/o violation (↑)

Average reward
±95% CI (↑)

Average % constraint
satisfaction ±95% CI (↑)

TD3 trained and
evaluated w/o penalty 100 − −11.07± 0.59 69.2± 4.1

POLICEd (ours) 93.4 93.4 −16.22± 0.68 100± 0.0

TD3 75.8 12.0 −45.20± 3.23 28.4± 3.9

CPO 2.0 2.0 −96.71± 3.45 89.9± 2.7

PPO-Barrier 100 86.2 −41.26±−2.30 86.2± 3.0

POLICEd trained w/o penalty 48.0 41.6 −70.09± 1.22 41.6± 4.3

TD3 trained w/o penalty 99.8 48.8 −45.69± 16.61 53.4± 4.4

TABLE I: Metrics comparison for different methods based on a 500 episode deployment with the fully-trained policies on the
safe arm task illustrated in Fig. 9. The top row (gray) provides an upper bound on the completion rate and maximal reward
achievable as TD3 is evaluated without penalties for constraint violation (i.e. without Runsf). We compare our POLICEd method
against the soft-constraint baseline CPO [1] and the learned safety certificate baseline PPO-Barrier [64]. We also report the
metrics for TD3 trained with and without the penalty as well as our POLICEd method trained without penalty as part of our
ablation study. The bold numbers denote the highest values achieved when constraint violations are appropriately penalized.
The completion task only assess whether the target is eventually reached, even if the constraint is not properly respected. For
all metrics higher is better (↑).

investigate the case of higher relative-degree constraints by
taking ideas from the works that extended CBFs to higher-
relative degrees [40, 46, 62, 63]. We would like to further
consider enforcing multiple constraints simultaneously. This
extension would require minimal changes to our theory but
would mostly involve extending the POLICE algorithm [8] to
enforce several affine regions instead of just one as initially
designed. Another direction of research could be to guarantee
safety during training.

ACKNOWLEDGMENTS

This work is supported by the National Science Founda-
tion, under grants ECCS-2145134, CAREER Award, CNS-
2423130, and CCF-2423131.

REFERENCES

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter
Abbeel. Constrained policy optimization. In Interna-
tional Conference on Machine Learning, pages 22 – 31.
PMLR, 2017.

[2] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen
Boyd, Steven Diamond, and J Zico Kolter. Differentiable
convex optimization layers. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

[3] Eitan Altman. Constrained Markov decision processes.
Routledge, 2021.

[4] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gen-
naro Notomista, Koushil Sreenath, and Paulo Tabuada.
Control barrier functions: Theory and applications. In
18th European Control Conference, pages 3420–3431.
IEEE, 2019.

[5] Brandon Amos and J Zico Kolter. OptNet: Differentiable
optimization as a layer in neural networks. In Interna-
tional Conference on Machine Learning, pages 136–145.
PMLR, 2017.

[6] Anil Aswani, Humberto Gonzalez, S Shankar Sastry, and
Claire Tomlin. Provably safe and robust learning-based
model predictive control. Automatica, 49(5):1216–1226,
2013.

[7] Randall Balestriero and Richard Baraniuk. A spline the-
ory of deep learning. In 35th International Conference on
Machine Learning, volume 80, pages 374–383. PMLR,
2018.

[8] Randall Balestriero and Yann LeCun. POLICE: Provably
optimal linear constraint enforcement for deep neural net-
works. In IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 1–5. IEEE, 2023.

[9] Alberto Bemporad and Manfred Morari. Robust model
predictive control: A survey. In Robustness in identifica-
tion and control, pages 207–226. Springer, 2007.

[10] Christopher Berner, Greg Brockman, Brooke Chan, Vicki
Cheung, Przemysław Dębiak, Christy Dennison, David
Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al.
Dota 2 with large scale deep reinforcement learning.
arXiv preprint arXiv:1912.06680, 2019.

[11] Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Wo-
jciech Zaremba. OpenAI Gym. arXiv preprint
arXiv:1606.01540, 2016.

[12] Lukas Brunke, Melissa Greeff, Adam W Hall, Zhao-
cong Yuan, Siqi Zhou, Jacopo Panerati, and Angela P
Schoellig. Safe learning in robotics: From learning-based
control to safe reinforcement learning. Annual Review
of Control, Robotics, and Autonomous Systems, 5:411 –
444, 2022.

[13] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural
Lyapunov control. Advances in Neural Information
Processing Systems, 32, 2019.

[14] Richard Cheng, Gábor Orosz, Richard M Murray, and
Joel W Burdick. End-to-end safe reinforcement learning

https://proceedings.mlr.press/v70/achiam17a
https://proceedings.neurips.cc/paper/2019/hash/9ce3c52fc54362e22053399d3181c638-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/9ce3c52fc54362e22053399d3181c638-Abstract.html
https://doi.org/10.1201/9781315140223
https://ieeexplore.ieee.org/abstract/document/8796030
https://proceedings.mlr.press/v70/amos17a.html
https://proceedings.mlr.press/v70/amos17a.html
https://doi.org/10.1016/j.automatica.2013.02.003
https://doi.org/10.1016/j.automatica.2013.02.003
http://proceedings.mlr.press/v80/balestriero18b/balestriero18b.pdf
http://proceedings.mlr.press/v80/balestriero18b/balestriero18b.pdf
https://ieeexplore.ieee.org/abstract/document/10096520
https://ieeexplore.ieee.org/abstract/document/10096520
https://ieeexplore.ieee.org/abstract/document/10096520
https://doi.org/10.1007/BFb0109870
https://doi.org/10.1007/BFb0109870
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1606.01540
https://www.annualreviews.org/doi/abs/10.1146/annurev-control-042920-020211
https://www.annualreviews.org/doi/abs/10.1146/annurev-control-042920-020211
https://proceedings.neurips.cc/paper_files/paper/2019/hash/2647c1dba23bc0e0f9cdf75339e120d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/2647c1dba23bc0e0f9cdf75339e120d2-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/4213

through barrier functions for safety-critical continuous
control tasks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 3387–3395,
2019.

[15] Frank J Christophersen. Optimal Control of Constrained
Piecewise Affine Systems. Springer, 2007.

[16] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik,
Todd Hester, Cosmin Paduraru, and Yuval Tassa. Safe
exploration in continuous action spaces. arXiv preprint
arXiv:1801.08757, 2018.

[17] Ersin Daş and Richard M Murray. Robust safe control
synthesis with disturbance observer-based control barrier
functions. In 61st Conference on Decision and Control,
pages 5566–5573. IEEE, 2022.

[18] Federico Di Palma and Lalo Magni. A multi-model
structure for model predictive control. Annual reviews
in control, 28(1):47–52, 2004.

[19] Priya L Donti, David Rolnick, and J Zico Kolter. DC3: A
learning method for optimization with hard constraints.
In International Conference on Learning Representa-
tions, 2020.

[20] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz,
Jerry Li, Cosmin Paduraru, Sven Gowal, and Todd Hes-
ter. Challenges of real-world reinforcement learning:
Definitions, benchmarks and analysis. Machine Learning,
110(9):2419 – 2468, 2021.

[21] Thomas Frerix, Matthias Nießner, and Daniel Cremers.
Homogeneous linear inequality constraints for neural
network activations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pages 748 – 749, 2020.

[22] Scott Fujimoto, Herke Hoof, and David Meger. Address-
ing function approximation error in actor-critic methods.
In International Conference on Machine Learning, pages
1587 – 1596. PMLR, 2018.

[23] Sicun Gao, Jeremy Avigad, and Edmund M Clarke. δ-
complete decision procedures for satisfiability over the
reals. In International Joint Conference on Automated
Reasoning, pages 286–300. Springer, 2012.

[24] A. Girard and S. Martin. Synthesis for constrained non-
linear systems using hybridization and robust controllers
on simplices. IEEE Transactions on Automatic Control,
57(4), 2012.

[25] Gene Golub. Numerical methods for solving linear least
squares problems. Numerische Mathematik, 7:206–216,
1965.

[26] Branko Grünbaum, Volker Kaibel, Victor Klee, and Gt-
inter M. Ziegler. Convex Polytopes. Springer Science &
Business Media, 2003.

[27] Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian
Walter, Jun Wang, Yaodong Yang, and Alois Knoll. A
review of safe reinforcement learning: Methods, theory
and applications. arXiv preprint arXiv:2205.10330, 2022.

[28] L. Habets and J. H. Van Schuppen. A control problem for
affine dynamical systems on a full-dimensional polytope.
Automatica, 40:21–35, 2004.

[29] Lukas Hewing, Kim P Wabersich, Marcel Menner, and
Melanie N Zeilinger. Learning-based model predictive
control: Toward safe learning in control. Annual Review
of Control, Robotics, and Autonomous Systems, 3:269–
296, 2020.

[30] Krishna C Kalagarla, Rahul Jain, and Pierluigi Nuzzo.
A sample-efficient algorithm for episodic finite-horizon
MDP with constraints. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages
8030–8037, 2021.

[31] M. Kloetzer and C. Belta. A fully automated framework
for control of linear systems from temporal logic spec-
ifications. IEEE Transactions on Automatic Control, 53
(1), 2008.

[32] Anthony W Knapp. Basic Real Analysis. Springer
Science & Business Media, 2005.

[33] Craig Knuth, Glen Chou, Necmiye Ozay, and Dmitry
Berenson. Planning with learned dynamics: Probabilis-
tic guarantees on safety and reachability via Lipschitz
constants. IEEE Robotics and Automation Letters, 6(3):
5129–5136, 2021.

[34] Mykel J Kochenderfer, Jessica E Holland, and James P
Chryssanthacopoulos. Next generation airborne collision
avoidance system. Lincoln Laboratory Journal, 19(1):
17–33, 2012.

[35] Andrei V Konstantinov and Lev V Utkin. A new com-
putationally simple approach for implementing neural
networks with output hard constraints. arXiv preprint
arXiv:2307.10459, 2023.

[36] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. In International Conference on Learning
Representations, 2016.

[37] Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wen-
hao Yu, Tingnan Zhang, and Ding Zhao. Constrained de-
cision transformer for offline safe reinforcement learning.
arXiv preprint arXiv:2302.07351, 2023.

[38] Lennart Ljung. System identification. In Signal analysis
and prediction, pages 163–173. Springer, 1998.

[39] Matthias Lorenzen, Fabrizio Dabbene, Roberto Tempo,
and Frank Allgöwer. Stochastic MPC with offline uncer-
tainty sampling. Automatica, 81:176–183, 2017.

[40] Haitong Ma, Jianyu Chen, Shengbo Eben, Ziyu Lin, Yang
Guan, Yangang Ren, and Sifa Zheng. Model-based con-
strained reinforcement learning using generalized control
barrier function. In 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 4552–
4559. IEEE, 2021.

[41] Haitong Ma, Changliu Liu, Shengbo Eben Li, Sifa
Zheng, and Jianyu Chen. Joint synthesis of safety
certificate and safe control policy using constrained re-
inforcement learning. In Learning for Dynamics and
Control Conference, pages 97–109. PMLR, 2022.

[42] Yue Meng, Sai Vemprala, Rogerio Bonatti, Chuchu
Fan, and Ashish Kapoor. ConBaT: Control barrier

https://ojs.aaai.org/index.php/AAAI/article/view/4213
https://ojs.aaai.org/index.php/AAAI/article/view/4213
https://doi.org/10.1007/978-3-540-72701-9
https://doi.org/10.1007/978-3-540-72701-9
https://arxiv.org/pdf/1801.08757.pdf
https://arxiv.org/pdf/1801.08757.pdf
https://ieeexplore.ieee.org/document/9993032
https://ieeexplore.ieee.org/document/9993032
https://ieeexplore.ieee.org/document/9993032
https://doi.org/10.1016/j.arcontrol.2004.01.004
https://doi.org/10.1016/j.arcontrol.2004.01.004
https://arxiv.org/pdf/2104.12225.pdf
https://arxiv.org/pdf/2104.12225.pdf
https://link.springer.com/article/10.1007/s10994-021-05961-4
https://link.springer.com/article/10.1007/s10994-021-05961-4
https://openaccess.thecvf.com/content_CVPRW_2020/html/w45/Frerix_Homogeneous_Linear_Inequality_Constraints_for_Neural_Network_Activations_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w45/Frerix_Homogeneous_Linear_Inequality_Constraints_for_Neural_Network_Activations_CVPRW_2020_paper.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://link.springer.com/chapter/10.1007/978-3-642-31365-3_23
https://link.springer.com/chapter/10.1007/978-3-642-31365-3_23
https://link.springer.com/chapter/10.1007/978-3-642-31365-3_23
https://doi.org/10.1109/TAC.2011.2168874
https://doi.org/10.1109/TAC.2011.2168874
https://doi.org/10.1109/TAC.2011.2168874
https://link.springer.com/article/10.1007/BF01436075
https://link.springer.com/article/10.1007/BF01436075
https://link.springer.com/book/10.1007/978-1-4613-0019-9
https://arxiv.org/pdf/2205.10330.pdf
https://arxiv.org/pdf/2205.10330.pdf
https://arxiv.org/pdf/2205.10330.pdf
https://doi.org/10.1016/j.automatica.2003.08.001
https://doi.org/10.1016/j.automatica.2003.08.001
https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1146/annurev-control-090419-075625
https://ojs.aaai.org/index.php/AAAI/article/view/16979
https://ojs.aaai.org/index.php/AAAI/article/view/16979
https://doi.org/10.1109/TAC.2007.914952
https://doi.org/10.1109/TAC.2007.914952
https://doi.org/10.1109/TAC.2007.914952
https://link.springer.com/book/10.1007/0-8176-4441-5
https://ieeexplore.ieee.org/abstract/document/9387079
https://ieeexplore.ieee.org/abstract/document/9387079
https://ieeexplore.ieee.org/abstract/document/9387079
https://www.ll.mit.edu/sites/default/files/page/doc/2018-05/19_1_1_Kochenderfer.pdf
https://www.ll.mit.edu/sites/default/files/page/doc/2018-05/19_1_1_Kochenderfer.pdf
https://arxiv.org/pdf/2307.10459.pdf
https://arxiv.org/pdf/2307.10459.pdf
https://arxiv.org/pdf/2307.10459.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/2302.07351.pdf
https://arxiv.org/pdf/2302.07351.pdf
https://link.springer.com/chapter/10.1007/978-1-4612-1768-8_11
https://doi.org/10.1016/j.automatica.2017.03.031
https://doi.org/10.1016/j.automatica.2017.03.031
https://ieeexplore.ieee.org/abstract/document/9636468
https://ieeexplore.ieee.org/abstract/document/9636468
https://ieeexplore.ieee.org/abstract/document/9636468
https://proceedings.mlr.press/v168/ma22a.html
https://proceedings.mlr.press/v168/ma22a.html
https://proceedings.mlr.press/v168/ma22a.html
https://arxiv.org/pdf/2303.04212.pdf

transformer for safe policy learning. arXiv preprint
arXiv:2303.04212, 2023.

[43] Ali Mesbah. Stochastic model predictive control: An
overview and perspectives for future research. IEEE
Control Systems Magazine, 36(6):30–44, 2016.

[44] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[45] Khan Muhammad, Amin Ullah, Jaime Lloret, Javier
Del Ser, and Victor Hugo C de Albuquerque. Deep
learning for safe autonomous driving: Current challenges
and future directions. IEEE Transactions on Intelligent
Transportation Systems, 22(7):4316–4336, 2020.

[46] Quan Nguyen and Koushil Sreenath. Exponential con-
trol barrier functions for enforcing high relative-degree
safety-critical constraints. In 2016 American Control
Conference, pages 322 – 328. IEEE, 2016.

[47] Tu-Hoa Pham, Giovanni De Magistris, and Ryuki
Tachibana. Optlayer - practical constrained optimization
for deep reinforcement learning in the real world. In
2018 IEEE International Conference on Robotics and
Automation, pages 6236–6243. IEEE, 2018.

[48] Zengyi Qin, Dawei Sun, and Chuchu Fan. Sablas:
Learning safe control for black-box dynamical systems.
IEEE Robotics and Automation Letters, 7(2):1928–1935,
2022.

[49] Nicholas Rober, Sydney M Katz, Chelsea Sidrane,
Esen Yel, Michael Everett, Mykel J Kochenderfer, and
Jonathan P How. Backward reachability analysis of neu-
ral feedback loops: Techniques for linear and nonlinear
systems. IEEE Open Journal of Control Systems, 2:108–
124, 2023.

[50] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[51] David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanc-
tot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Science,
362(6419):1140–1144, 2018.

[52] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[53] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo:
A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033. IEEE, 2012.

[54] Jesus Tordesillas, Jonathan P How, and Marco Hutter.
RAYEN: Imposition of hard convex constraints on neural
networks. arXiv preprint arXiv:2307.08336, 2023.

[55] Joseph A Vincent and Mac Schwager. Reachable polyhe-
dral marching (RPM): A safety verification algorithm for
robotic systems with deep neural network components.
In IEEE International Conference on Robotics and Au-

tomation, pages 9029–9035. IEEE, 2021.
[56] Kim P Wabersich, Lukas Hewing, Andrea Carron,

and Melanie N Zeilinger. Probabilistic model pre-
dictive safety certification for learning-based control.
IEEE Transactions on Automatic Control, 67(1):176–
188, 2021.

[57] Kim Peter Wabersich and Melanie N Zeilinger. A predic-
tive safety filter for learning-based control of constrained
nonlinear dynamical systems. Automatica, 129:109597,
2021.

[58] Le Yi Wang and Ji-Feng Zhang. Fundamental limitations
and differences of robust and adaptive control. In
Proceedings of the 2001 American Control Conference,
volume 6, pages 4802–4807. IEEE, 2001.

[59] Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu
Wang, Wanxin Jin, Zhuoran Yang, Zhaoran Wang, Chao
Huang, and Qi Zhu. Enforcing hard constraints with
soft barriers: Safe reinforcement learning in unknown
stochastic environments. In International Conference on
Machine Learning, pages 36593–36604. PMLR, 2023.

[60] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song,
Cho-Jui Hsieh, Luca Daniel, Duane Boning, and Inderjit
Dhillon. Towards fast computation of certified robustness
for ReLU networks. In International Conference on
Machine Learning, pages 5276–5285. PMLR, 2018.

[61] Tyler Westenbroek, David Fridovich-Keil, Eric Mazum-
dar, Shreyas Arora, Valmik Prabhu, S Shankar Sastry,
and Claire J Tomlin. Feedback linearization for uncertain
systems via reinforcement learning. In 2020 IEEE
International Conference on Robotics and Automation,
pages 1364 – 1371. IEEE, 2020.

[62] Wei Xiao and Calin Belta. Control barrier functions for
systems with high relative degree. In 58th Conference
on Decision and Control, pages 474 – 479. IEEE, 2019.

[63] Wei Xiao, Tsun-Hsuan Wang, Ramin Hasani, Makram
Chahine, Alexander Amini, Xiao Li, and Daniela Rus.
BarrierNet: Differentiable control barrier functions for
learning of safe robot control. IEEE Transactions on
Robotics, 39(3):2289 – 2307, 2023.

[64] Yujie Yang, Yuxuan Jiang, Yichen Liu, Jianyu Chen,
and Shengbo Eben Li. Model-free safe reinforcement
learning through neural barrier certificate. IEEE Robotics
and Automation Letters, 8(3):1295–1302, 2023.

[65] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui
Hsieh, and Luca Daniel. Efficient neural network ro-
bustness certification with general activation functions.
Advances in Neural Information Processing Systems, 31,
2018.

[66] Huan Zhang, Pengchuan Zhang, and Cho-Jui Hsieh.
RecurJac: An efficient recursive algorithm for bounding
Jacobian matrix of neural networks and its applications.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 5757–5764, 2019.

[67] Weiye Zhao, Tairan He, and Changliu Liu. Model-free
safe control for zero-violation reinforcement learning. In
5th Annual Conference on Robot Learning, pages 784–

https://arxiv.org/pdf/2303.04212.pdf
https://doi.org/10.1109/MCS.2016.2602087
https://doi.org/10.1109/MCS.2016.2602087
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://doi.org/10.1109/TITS.2020.3032227
https://doi.org/10.1109/TITS.2020.3032227
https://doi.org/10.1109/TITS.2020.3032227
https://ieeexplore.ieee.org/abstract/document/7524935
https://ieeexplore.ieee.org/abstract/document/7524935
https://ieeexplore.ieee.org/abstract/document/7524935
https://ieeexplore.ieee.org/abstract/document/8460547
https://ieeexplore.ieee.org/abstract/document/8460547
https://doi.org/10.1109/LRA.2022.3142743
https://doi.org/10.1109/LRA.2022.3142743
https://ieeexplore.ieee.org/abstract/document/10097878
https://ieeexplore.ieee.org/abstract/document/10097878
https://ieeexplore.ieee.org/abstract/document/10097878
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://inst.eecs.berkeley.edu//~cs188/sp20/assets/files/SuttonBartoIPRLBook2ndEd.pdf
https://inst.eecs.berkeley.edu//~cs188/sp20/assets/files/SuttonBartoIPRLBook2ndEd.pdf
https://ieeexplore.ieee.org/document/6386109
https://ieeexplore.ieee.org/document/6386109
https://arxiv.org/pdf/2307.08336.pdf
https://arxiv.org/pdf/2307.08336.pdf
https://ieeexplore.ieee.org/abstract/document/9561956
https://ieeexplore.ieee.org/abstract/document/9561956
https://ieeexplore.ieee.org/abstract/document/9561956
https://doi.org/10.1109/TAC.2021.3049335
https://doi.org/10.1109/TAC.2021.3049335
https://doi.org/10.1016/j.automatica.2021.109597
https://doi.org/10.1016/j.automatica.2021.109597
https://doi.org/10.1016/j.automatica.2021.109597
https://doi.org/10.1109/ACC.2001.945742
https://doi.org/10.1109/ACC.2001.945742
https://proceedings.mlr.press/v202/wang23as.html
https://proceedings.mlr.press/v202/wang23as.html
https://proceedings.mlr.press/v202/wang23as.html
https://proceedings.mlr.press/v80/weng18a/weng18a.pdf
https://proceedings.mlr.press/v80/weng18a/weng18a.pdf
https://ieeexplore.ieee.org/abstract/document/9197158
https://ieeexplore.ieee.org/abstract/document/9197158
https://ieeexplore.ieee.org/abstract/document/9029455
https://ieeexplore.ieee.org/abstract/document/9029455
https://ieeexplore.ieee.org/abstract/document/10077790
https://ieeexplore.ieee.org/abstract/document/10077790
https://doi.org/10.1109/LRA.2023.3238656
https://doi.org/10.1109/LRA.2023.3238656
https://proceedings.neurips.cc/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://cdn.aaai.org/ojs/4522/4522-13-7561-1-10-20190706.pdf
https://cdn.aaai.org/ojs/4522/4522-13-7561-1-10-20190706.pdf
https://proceedings.mlr.press/v164/zhao22a.html
https://proceedings.mlr.press/v164/zhao22a.html

793. PMLR, 2022.
[68] Weiye Zhao, Rui Chen, Yifan Sun, Tianhao Wei, and

Changliu Liu. State-wise constrained policy optimiza-
tion. arXiv preprint arXiv:2306.12594, 2023.

[69] Weiye Zhao, Tairan He, and Changliu Liu. Probabilistic
safeguard for reinforcement learning using safety index
guided Gaussian process models. In Learning for Dy-
namics and Control Conference, pages 783–796. PMLR,
2023.

[70] Weiye Zhao, Yifan Sun, Feihan Li, Rui Chen, Tianhao
Wei, and Changliu Liu. Learn with imagination: Safe set
guided state-wise constrained policy optimization. arXiv
preprint arXiv:2308.13140, 2023.

.

https://arxiv.org/pdf/2306.12594.pdf
https://arxiv.org/pdf/2306.12594.pdf
https://proceedings.mlr.press/v211/zhao23a.html
https://proceedings.mlr.press/v211/zhao23a.html
https://proceedings.mlr.press/v211/zhao23a.html
https://arxiv.org/pdf/2308.13140.pdf
https://arxiv.org/pdf/2308.13140.pdf

APPENDIX A
PROOF OF LEMMA 1

Proof: We want to prove that buffer B of (5) is a polytope.
By definition (5), buffer B can be written as B = C−1

(
[d −

r, d]
)
∩ S , where C−1

(
[d − r, d]

)
:=
{
s : Cs ∈ [d − r, d]

}
denotes the inverse image of the interval [d−r, d]. The inverse
image of a set is always defined, even if matrix C is not
invertible. Therefore, B is the intersection of affine variety
C−1

(
[d − r, d]

)
and polytope S and hence B is a polytope

according to result 4 of section 3.1 of [26].

APPENDIX B
PROOF OF LEMMA 2

Proof: We want to prove that any ε sufficiently large is
an approximation measure in the sense of Definition 1. We
will first determine the infimum of all approximation measures
before proving that any ε larger than this infimum is an
approximation measure.

For every matrices A ∈ Rn×n, B ∈ Rn×m, and c ∈ Rn

introduce

ε∗ABc := min

{
ε :
∣∣Cf(s, a)− C(As+Ba+c)

∣∣ ≤ ε,
for all a ∈ A, and all s ∈ B

}
.

Note that the minimum in ε∗ABc exists since the function to
minimize is continuous (f is assumed continuous at (2)) and
sets A and B are compact. Then, all ε∗ABc are approximation
measures as they satisfy Definition 1. Define

ε∗ := inf
{
ε∗ABc : A ∈ Rn×n, B ∈ Rn×m, c ∈ Rn

}
.

We will now show that any ε larger than ε∗ is in fact an
approximation measure. Let ε > ε∗. Since ε∗ is the infimum
of all approximation measures following Lemma 3, there exists
an approximation measure α such that ε∗ ≤ α < ε. Since α is
an approximation measure, there exists a triplet (A,B, c) for
which (7) holds with upper bound α. Note that (7) also holds
for this same triplet but with upper bound ε since ε > α. Then
ε is an approximation measure.

Lemma 3. The infimum of all approximation measures is ε∗.

Proof: To show that ε∗ is the infimum of all approx-
imation measures, we need to show that it is their largest
lower bound. If ε is an approximation measure, then it has
a triplet (A,B, c) satisfying (7). By definition of ε∗ABc and
ε∗, we then have ε ≥ ε∗ABc ≥ ε∗. Thus, ε∗ is a lower bound
to all approximation measures.

Let α be a lower bound to all approximation measures.
Since all the ε∗ABc are approximation measures, α ≤ ε∗ABc

for all A,B, c, i.e., α ≤ ε∗ by definition of ε∗. Therefore, ε∗

is the largest lower bound of all approximation measures.

APPENDIX C
PROOF OF COROLLARY 1

Proof: As in the proof of Theorem 1, we take advantage
of the linearity of dynamics (8) to extend (15) from the vertices

of B to the whole set B. Note that for any st ∈ V
(
B
)
,

combining repulsion condition (15) with (7) yields

C
(
Ast +Bµθ(st) + c

)
≤
∣∣C(Ast +Bµθ(st) + c

)
− Cf

(
st, µθ(st)

)∣∣
+ Cf

(
st, µθ(st)

)
≤ ε+

1

δt
C
(
st+1 − st

)
≤ ε− 2εδt

1

δt
≤ −ε.

As in the proof of Theorem 1, we use the convexity of polytope
B of vertices V

(
B
)

and the linearity of approximation (8) to
obtain

C
(
As+Bµθ(s) + c

)
≤ −ε, for all s ∈ B. (19)

We can now revert this inequality to the discrete dynamics.
For st ∈ B,

C
st+1 − st

δt

≤
∣∣∣∣C st+1 − st

δt
− C

(
Ast +Bµθ(st) + c

)∣∣∣∣ (20)

+ C
(
Ast +Bµθ(st) + c

)
≤
∣∣Cf

(
st, µθ(st)

)
− C

(
Ast +Bµθ(st) + c

)∣∣− ε

≤ ε− ε ≤ 0.

Note that the first inequality follows from the triangular
inequality, the second from the definition of st+1 and (19),
and the third inequality stems from (7). We will now show
that (20) prevents all trajectories τSd (s0, µθ) from exiting safe
set Ss when s0 ∈ Ss.

We assume for contradiction purposes that trajectory
τSd (s0, µθ) /∈ Ss for some s0 ∈ Ss. Since τSd (s0, µθ) ∈ S,
there exists some t ∈ N such that st ∈ Ss and st+1 ∈ S\Ss.
Thus, Cst < d and Cst+1 ≥ d. Now (16) yields

C(st+1 − st) ≤ r,

since st ∈ Ss and µθ(st) ∈ A. Then, Cst ≥ Cst+1−r ≥ d−r.
Thus, st ∈ B.

Since Cst < d and Cst+1 ≥ d, we have

C
st+1 − st

δt
> 0,

which contradicts (20). Therefore, all trajectories τSd starting
in safe set Ss remain in Ss.

APPENDIX D
POLICED RL TRAINING TIPS

During our numerous implementations we learned a few
tips to help any POLICEd actor to learn a safe policy faster.
However, as in standard RL training, there are no guarantees
that training will converge to a feasible policy.

To ensure the admissibility of policy µθ, i.e., µθ(s) ∈ A for
all s ∈ S, the classical approach would be to add a final layer
to the neural network constituted of a bounded function like
the hyperbolic tangent or sigmoid. However, these functions
are not piecewise affine, which would invalidate the assump-
tions of [8]. A clipping of the output would conserve the

piecewise affine character of µθ but would modify the partition
R of (1), hence preventing the POLICE algorithm to guarantee
the affine character of µθ on buffer B. Instead, we addressed
this issue by adding a large penalty to the reward function
when µθ(s) /∈ A. This approach has been very successful in
all our experiments.

Another helpful trick to improve the training of a POLICEd
network comes from manual curriculum learning. We start the
training with an affine buffer B of size zero. Once a reward
threshold is met, we iteratively increase the size of the buffer
until it reaches the specified size. This minimizes the impact
of POLICE in slowing the learning process.

Similarly, we noticed that resetting the initial state of some
trajectories inside the buffer helped the POLICEd policy learn
repulsion condition (9) or (15). We would typically reset 1 in
10 initial states inside the buffer during training.

It is also useful to note that for an actor-critic algorithm,
only the actor DNN is POLICEd, and the critic is not modified.

We tested several different approaches for the environment
behavior with respect to constraint violations.

• Penalized Constraints: when the agent violates the con-
straint, it is allowed to keep going but incurs a penalty.

• Terminal Constraints: when the agent violates the con-
straint, the episode ends with a penalty.

• Bouncing Constraints: when the agent tries to step into
the constraint, it incurs a penalty and its state remains at
its last constraint-abiding value.

The inverted pendulum environment of Section VII-A imple-
ments terminal constraints, while the linear environment of
Section VI and the robotic arm environment of Section VII-B
rely on bouncing constraints.

APPENDIX E
IMPLEMENTATION DETAILS

Our framework of closed-loop constrained RL is illustrated
with Fig. 10.

learned policy

action

environmentstate

constraint

state

reward

Fig. 10: Illustration of closed-loop constrained RL.

A. Safe inverted pendulum

In the inverted pendulum experiment, we choose to limit
the buffer to x ∈ [−0.9, 0.9], whereas the cart position x
can in fact reach −1 and 1. However, when reaching these
extremal positions the cart bounces back which provokes a
severe discontinuity in the velocities. Our framework can
handle discontinuities through the ε term of (7) Moreover,
a safe policy must be able to stabilize the inverted pendulum
without pushing the cart to its extremal positions. For all these
reasons, we decided to stop our buffer short of x = ±1.

Algorithm 2 POLICEd RL training process

Require: Environment E (13), constraint (3), reward thresh-
old rT

1: Let Rb denote the replay buffer, µθ our policy, B our
affine buffer, and U the uniform sampling function.

2: ▷ Main training loop
3: while reward < rT and (15) not satisfied on B do
4: while reward < rT do ▷ Standard RL training
5: Reset s(0) = 0 or s(0) ∼ U(B)
6: while not done do
7: Take action a(t) = µθ(s(t))
8: Get reward r(t) = R(s(t), a(t))
9: Get (s(t+ δt), respect, done) from E

10: Add
(
s(t), a(t), s(t+ δt), r(t), done

)
to Rb

11: end while
12: Update policy µθ with Rb ▷ Note: This often

reduces the constraint satisfaction of the policy
13: end while
14: ▷ Constraint Training Loop
15: while (15) not satisfied on B do
16: Reset s(0) ∼ U(V(B)) ▷ Reset the initial state

only on the buffer vertices
17: Take action a(0) = µθ(s(0))
18: Get reward r(t) = R(s(0), a(0))
19: Get (s(δt), respect, done) from E
20: if not respect then
21: Add

(
s(0), a(0), s(δt), r(0), done

)
to Rb

22: end if
23: Update policy µθ with Rb ▷ Note: This often

reduces the reward earned by the policy
24: end while
25: end while
Ensure: Trajectories τSd (s0, µθ) of (14) starting from safe

state s0 ∈ Ss do not leave safe set Ss

B. Safe robotic arm

At each timestep k, the actions ak ∈ R7 outputted by the
policy are promoted to only produce small joint changes in
each step. For the KUKA Arm, the maximum joint angles
are [±2.97,±2.09,±2.97,±2.09,±2.97,±2.09,±3.05], and
the agent incurs a penalty of 3 for choosing an action which
would go outside of this range.

The target is always placed at X-Y-Z coordinates
[0.5, 0.5, 0.5], the constraint is a rectangular prism region
placed above the target and centered at [0.5, 0.5, 0.60] with
side-lengths [0.16, 0.30, 0.06], respectively. We choose this
constraint because it prevents the robotic arm from easily
reaching the target and from fully minimizing the reward.
Indeed, the optimal policy is modified by the existence of
the constraint for a large set of initial states s(0). The buffer
B is larger than the constraint and surrounds it on all sides.
The buffer is centered at [0.5, 0.5, 0.62] and is also a rect-
angular prism with sizes [0.18, 0.32, 0.10]. These placements
are all illustrated in Fig. 9. These choice of side-lengths were

calculated based on the equations presented in Section IV.
Additionally, during training, we also prevented the agent

from taking actions that would violate the constraint during
training, which involves both assigning a penalty and leaving
the state unchanged. This choice was made to ensure that
the episodes that involved violation did not end too quickly,
as longer episodes that did not violate the constraint might
take more steps and incur more reward penalties. When
evaluating the baselines, both training with violations allowed
and training without were tested, and the case with better
performance was reported.

1) Comparison with the literature: While building Table I
we noticed several interesting facts about other approaches.
We found that the CPO [1] method becomes increasingly
incapable of approaching the target. Additionally, given that
the state space is very large, it can often experience new
initial states during deployment, causing it to still violate the
constraint in some cases.

Meanwhile, the PPO-Barrier [64] approach often gathers
many thousands of episodes and environment samples in
its initial "iterations", allowing it to appear to train quickly
(around 250,000 environment steps for convergence). In com-
parison, our POLICEd approach primarily converges in around
150,000 environment samples. We further showcase these
findings in the training curves showcased in Fig. 11.

(a) Averaged log-reward

(b) Averaged percentage of constraint satisfaction
Fig. 11: Reward and Constraint Adherence curves for the safe
arm scenario. For the average reward curve, the solid lines
correspond to the reward per episode averaged and log(·)
over 5 training cycles of each method. The dashed lines
are the highest average rewards achieved by each method.
Meanwhile for the constraint satisfaction, the constraint re-
spect per episode was averaged over 5 training cycles of each
method. Note that the x-axis on both curves is in thousands
of environment samples, and each curve ends when it was
considered converged. Note that CPO was trained for an
average of 4 million environment steps and has been cut off,
but the reported maximum reward is over the entire dataset.
95% CI bounds were omitted for clarity, but can be provided
on request.

	Introduction
	Related works
	Enforcing hard constraints on neural network outputs
	Constraints in reinforcement learning
	Relative degree of constraints
	Black-box safety with control theory

	Prior Work
	Framework
	Constrained Reinforcement Learning
	Guaranteed satisfaction of hard constraints
	Existence conditions

	Implementation
	Simulations
	Inverted pendulum experiment
	Robotic arm

	Conclusion
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	Appendix C: Proof of Corollary 1
	Appendix D: POLICEd RL training tips
	Appendix E: Implementation Details
	Safe inverted pendulum
	Safe robotic arm
	Comparison with the literature

