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Abstract—The Lightweight Surface Manipulation System, or
LSMS, is a family of scalable long-reach cable-actuated manip-
ulators. The design of the LSMS has a high payload ratio for
efficient operations on planetary surfaces like the Moon or Mars.
The LSMS has nonlinear, coupled, and hybrid dynamics. The
engineering decisions that led to these challenging dynamics make
this structure light and efficient. This paper proposes a novel
trajectory tracking algorithm for these cranes that facilitates
precise autonomous and teleoperated operations. This algorithm
enables these robots to follow complex trajectories that avoid
obstacles and pickup regolith in a construction site.

I. INTRODUCTION

The Lightweight Surface Manipulation System, or LSMS,

is a family of long-reach cable-actuated manipulators. Their

structure is specifically designed for a multitude of planetary

surface operations [1], like the construction of a lunar safe

haven [2]. The LSMS family has a high payload ratio, and

the ability to scale up dimensions and actuators linearly [3].

The smallest crane within the family is the LSMS-L35. It

has a 35-kg lift capacity in lunar gravity [4], and is sized

for the Commercial Lunar Payload Services (CLPS) mission

landers [5]. The largest robot is the LSMS-1000. It has a 1000-

kg lift capacity in lunar gravity [6], and is sized for the Blue

Moon lander [7]. Different robots within the LSMS family are

available to government agencies, industry, and academia [8].

Serial cable-actuated manipulators, like the LSMS, can ac-

commodate all actuators on their base link. This helps reduce

the power of their motors and the mass of the overall structure.

Nonetheless, this introduces challenges in the routing of the

cables and poses an interesting control problem. How to move

these cables to track an arbitrary trajectory in a complex

environment. Some of the challenges addressed in this paper

can be anticipated from Figure 1: i) the nonlinearities caused

by the geometry of the cables; ii) the use of spreaders to

distribute the loads in different configurations leads to discrete

switches in the crane dynamics [9], see points D, H and I;

iii) the coupling in the movement of different joint angles,

since reeling in a single cable can lead to angle movements

in multiple joints; and iv) maintaining tension on the cables

to retain controllability of the joint angles.

The work in [10] provides an overview of different lunar

cranes, and a brief comparison to Earth crane technologies.

Gantry cranes are simple, and present excellent tip-over sta-

bility. This type of cranes are commonly found in industrial

sites [11]. Recent developments in house printing technologies

have lead to the advancement of algorithms for their use in

robotic applications. As a result, there is a variety of trajectory

tracking algorithms for gantry cranes. Some even leverage

the dynamics of a spherical pendulum to model the payload

movement [12, 13]. However, these cranes are not a cost-

effective solution for lunar and martian operations, due to

their reduced payload ratio. Cranes with a small form factor,

like the articulated cranes in the LSMS family [14] or the

Fig. 1: LSMS-L35 mounted on a mock-up of the payload

deck of a Peregrine lander [5], in front of a lunar backdrop.

Actuated cables are highlighted in red, whereas non-actuated

cables are highlighted in black for visibility. Relevant points

in the structure are labeled using capital letters, and their

exact position is highlighted by a small green dot: A and B

mark the location of the cable spools; C and G correspond

to the shoulder and elbow joints; F defines the position of

an internal pulley, which is used to route cable B; E and J

are cable attachment points; K marks the position of the end

effector; and D, H and I denote the location of the pulleys

at the end of the spreaders. The function of these spreaders is

twofold: i) the efficient distribution of loads under different

crane configurations, and ii) managing the cable geometry,

which extends the range of operation of the LSMS and enables

its use as a manipulator. As the LSMS moves, the pulleys on

spreaders D, H and I rest against or lift off from the cables,

changing the spreader configuration.



tower crane 34K by Liebherr [15], can be easily packaged

and deployed, specially if they are self erecting. This provides

a significant advantage on a planetary surface where humans

may not be present. Lattice boom cranes, a common sight in

large construction projects, share some similarities with the

LSMS, such as cable actuation. However, lattice boom cranes

tend to operate with much larger payloads. The operations of

Earth-based construction cranes always involve human drivers.

Some examples are the tower cranes by Liebherr [16], and

the lattice boom cranes by Manitowoc [17] or Kobelco [18].

Equipped with sophisticated algorithms, these platforms can

dampen payload oscillations [19], and precisely place large

payloads where the operator desires [20]. Unlike the LSMS,

these cranes are not designed to operate as a serial manipulator.

Accordingly, tracking algorithms for complex trajectories are

not publicly available for serial cable-actuated cranes.

Relevant work in [21] proposes a general autonomy frame-

work to address critical technology gaps in advanced robotics

and autonomous payload handling, identified by NASA Space

Technology Mission Directorate and the Exploration Systems

Development Mission Directorate in [22, 23]. The algorithm

proposed here enables serial tension-actuated manipulators

to autonomously follow arbitrary trajectories with precision.

To the best of the authors’ knowledge, there is no previous

algorithm that accomplishes this objective for the LSMS

family. This paper presents two main contributions: i) the

derivation of the system dynamics for the LSMS robots, which

are nonlinear, coupled and hybrid; and ii) the design of a

nonlinear trajectory tracking algorithm with formal guarantees

that leverages these dynamics. This paper uses Lyapunov and

switched systems theory [24, 25] to design a control law with

exponential stability under ideal conditions. Later in the text,

this result is extended to non-ideal conditions, with uncertain-

ties in the geometry of the LSMS and tracking errors in the

motors. These perturbations are propagated through the error

dynamics to derive transient and steady-state performance

bounds.

The paper is structured as follows. Section II presents the

geometric model used to design the algorithm. Section III

proposes a novel trajectory tracking algorithm and analyzes

its stability. Performance bounds are provided under both ideal

and realistic assumptions. Section IV shows the test results on

the LSMS-L35. Section V closes the paper with a summary of

the theoretical results and their comparison to hardware tests.

II. LSMS MODEL

Given a complex trajectory, specifying desired joint angles

and rates as a function of time, the task is to design motor

commands and cable movements to track the trajectory. To this

end, consider the geometric model of the LSMS illustrated in

Figure 2. All passive structural elements are depicted in black,

whereas actuated cables are colored in red. The cable that

controls the shoulder is attached to the structure at point E, and

the cable for the elbow is only attached at point J . Reference

frames are color coded using red, green, and blue for the x, y,

and z axes, respectively. The ground reference frame {G} is

located at the base of the LSMS and is aligned with the north-

east-down axes. Each joint has a reference frame attached,

which only rotates about its z axis. The x axis of the waist

frame {0} is aligned with the plane of the LSMS, and its

rotation about the z axis with respect to {G} is denoted by

angle θ0. The shoulder is assigned frame {1}, and the rotation

with respect to {0} is given by θ1. The elbow has frame {2},

and its rotation with respect to {1} is defined by θ2. These

definitions yield the following transformation matrices:

RG

0
:=

[

cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1

]

, R0

1
:=

[

cos θ1 − sin θ1 0
0 0 1

− sin θ1 − cos θ1 0

]

,

R1

2
:=

[

cos θ2 − sin θ2 0
sin θ2 cos θ2 0

0 0 1

]

∈ SO(3).
(1)

Note that R0

1
is the result of two rotations: i) about axis z by

an angle θ1; and ii) about axis x by an angle of −90 degrees.

The LSMS is equipped with three motors located at points 0,

A, and B, with gear ratios i0, iA, and iB. The first motor

controls the waist. The last two motors, A and B, control the

cable lengths, ℓA and ℓB. Each of these motor has a spool with

radii rA and rB.

To find the relation between the joint angles and the cable

lengths use the geometry detailed in Figures 3 and 4. Figure 3

shows the geometry of cable A for two configurations, depend-

ing on whether spreader D is load-bearing. Spreader D is load-

bearing when cable A rests against its pulley. For simplicity,

only the geometric elements that are relevant are shown. For

instance, Figure 3a does not include spreader D because it

is not load-bearing. Unit vectors e0x
and e0z

in Figure 3

ID Link Joint

0 kingpost waist

1 arm shoulder

2 forearm elbow

Fig. 2: Schematic of the LSMS. The legend includes the link

and joint names. Actuated cables are depicted in red, whereas

structural passive cables are shown in black. Reference frames

{G}, {0}, {1} and {2} are the ground, waist, shoulder, and

elbow joint frames. Note that the origin of frames {G} and

{0} is coincident. They are color coded using red, green, and

blue for the x, y, and z axes, respectively.



represent the x and z axes of frame {0}, translated to point C.

Vectors e1x
and e1y

denote the x and y axes of frame {1}.

Similarly, Figure 4 depicts the geometry of cable B for three

different configurations, depending on whether spreaders H

and I are load-bearing. Constant distances between two points

X and Y are denoted by dXY , whereas cable lengths that vary

with θ1 and θ2 are ℓXY .

The total length of cables A and B is summarized in

Tables I and II for the different spreader configurations. All

variables ℓXY contributing to the total lengths ℓA and ℓB can be

expressed using the law of cosines as a function of θ1 and θ2
as follows.

ℓ2
AE

(θ1) = d2
AC

+ d2
CE

− 2 dAC dCE cosαa(θ1),

ℓ2
AD

(θ1) = d2
AC

+ d2
CD

− 2 dAC dCD cosαb(θ1),

ℓ2
BF

(θ1) = d2
BC

+ d2
CF

− 2 dBC dCF cos γ(θ1),

ℓ2
FJ
(θ2) = d2

FG
+ d2

GJ
− 2 dFG dGJ cosβa(θ2),

ℓ2
FI
(θ2) = d2

FG
+ d2

GI
− 2 dFG dGI cosβb(θ2),

ℓ2
FH

(θ2) = d2
FG

+ d2
GH

− 2 dFG dGH cosβc(θ2),

(2)

where the angles on the right-hand side of this equation are

αa(θ1) := 2π − θA − θE − θ1,

αb(θ1) := 2π − θA − θD − θ1,

γ(θ1) := 2π − θB − θF1
− θ1,

βa(θ2) := 2π − θJ − θF2
− θ2,

βb(θ2) := 2π − θI − θF2
− θ2,

βc(θ2) := 2π − θH − θF2
− θ2.

(3)

See Figure 3 for the definition of the structural angles θA,

θD, and θE; and Figure 4 for θB, θF1
, θF2

, θH , θI , and θJ .

The following section derives the transition angles between

the different spreader configurations in Figures 3 and 4.

TABLE I: Length of cable A.

Configuration (a) (b)

Contact with D No Yes

Condition θ1 ≥ θ∗1 θ1 < θ∗1

ℓA(θ1) ℓAE ℓAD + dDE

ℓ̇A(θ1) ℓ̇AE ℓ̇AD

TABLE II: Length of cable B.

Configuration (a) (b) (c)

Contact with H No No Yes

Contact with I No Yes Yes

Condition θ2 ≥ θ∗2 θ∗∗2 ≤ θ2 < θ∗2 θ2 < θ∗∗2

ℓB(θ1, θ2) ℓBF + ℓFJ

ℓBF + ℓFI+ ℓBF + ℓFH+

dIJ dHI + dIJ

ℓ̇B(θ1, θ2) ℓ̇BF + ℓ̇FJ ℓ̇BF + ℓ̇FI ℓ̇BF + ℓ̇FH

A. Transition Angles

To find the angle θ∗1 that marks the transition between

configurations (a) and (b) in Figure 3, consider vectors ZvXY

from point X to point Y on the LSMS, expressed in reference

frame {Z}. Then, the following equation ensures that points

A, D, and E are colinear, and point D is between A and E:

θ∗1 := {θ1 | det (M∗
1 ) = 0 ∧ 1vAD · 1vDE > 0} , (4)

where the columns of matrix M∗
1 contain the LSMS in-plane

components of vectors 1vAD and 1vDE , that is

M∗
1 := [ 1 0 0

0 1 0 ] [
1vAD,

1vDE] . (5)

Since 1vAD = R0

1

⊤0vAC + 1vCD, the determinant in Equa-

tion (4) yields an equality of the form

a∗1 cos θ1 + b∗1 sin θ1 = c∗1, (6)

(a) Cable A does not rest against pulley D when θ1 ≥ θ∗1 .

(b) Cable A rests against pulley D when θ1 < θ∗1 .

Fig. 3: Geometry of cable A. The left column shows schemat-

ics with relevant parameters in the derivation of the length of

cable A. The right column shows a simplified version of these

schematics overlaid on a picture of the LSMS-L35. Only the

kingpost and part of the arm are shown in these images. Note

that the black segments in these diagrams do not depict the

struts of the LSMS, but vectors between two relevant points

on the same link.



(a) Cable B only rests against pulley F when θ2 ≥ θ∗2 .

(b) Cable B rests against pulleys F and I when θ∗∗2 ≤ θ2 < θ∗2 .

(c) Cable B rests against pulleys F , H and I when θ2 < θ∗∗2 .

Fig. 4: Geometry of cable B. The left column shows schematics with relevant parameters in the derivation of the length of

cable B. The right column shows a simplified version of these schematics overlaid on a picture of the LSMS-L35. Note that

the black segments in these diagrams do not depict the struts of the LSMS, but vectors between two relevant points on the

same link. Some angles and distances in the schematics have been distorted to fit the symbols for the relevant parameters.

Compare, for example, the distance between points C and F or angle γ on the left and right columns.



with constant coefficients a∗1, b∗1, and c∗1, fully defined by the

geometry of the LSMS

a∗1 := 0v⊤
AC

[

0 1 0
0 0 0
1 0 0

]

1vDE, b∗1 := 0v⊤
AC

[

1 0 0
0 0 0
0 −1 0

]

1vDE ,

c∗1 := 1v⊤
CD

[

0 −1 0
1 0 0
0 0 0

]

1vDE.
(7)

Equation (6) has two closed-form solutions, which can be

obtained with the change of variables a∗1 = r cosα and

b∗1 = r sinα as

θ∗1{1,2} = atan2 (b∗1, a
∗
1)± acos

(

c∗1

(

a∗1
2 + b∗1

2
)−

1

2

)

. (8)

The correct solution θ∗1 can be identified by checking the sec-

ond condition in Equation (4). Repeating the same procedure

for spreaders H and I yields θ∗2 and θ∗∗2 , the transition angles

between configurations (a) and (b), and (b) and (c), shown in

Figure 4.

θ∗2 := {θ2 | det(M∗
2 ) = 0 ∧ 2vFI ·

2vIJ > 0} ,

θ∗∗2 := {θ2 | det(M∗∗
2 ) = 0 ∧ 2vFH · 2vHI > 0} ,

(9)

where matrices M∗
2 and M∗∗

2 are

M
∗

2 := [ 1 0 0
0 1 0 ]

[

2
vFI ,

2
vIJ

]

, M
∗∗

2 := [ 1 0 0
0 1 0 ]

[

2
vFH ,

2
vHI

]

. (10)

The correct solutions can be retrieved from the following
expressions, by checking which solutions meet the second
conditions in Equation (9):

θ
∗

2{1,2}
= atan2 (b∗2, a

∗

2)± acos

(

c
∗

2

(

a
∗

2
2
+ b

∗

2
2
)−

1

2

)

,

θ
∗∗

2{1,2}
= atan2 (b∗∗2 , a

∗∗

2 )± acos

(

c
∗∗

2

(

a
∗∗

2
2
+ b

∗∗

2
2
)

−
1

2

)

,

(11)

with constant coefficients

a
∗

2 := 1
v
⊤

FG

[

0 1 0
−1 0 0
0 0 0

]

2
vIJ , b

∗

2 := 1
v
⊤

FG

[

1 0 0
0 1 0
0 0 0

]

2
vIJ ,

c
∗

2 := 2
v
⊤

GI

[

0 −1 0
1 0 0
0 0 0

]

2
vIJ , a

∗∗

2 := 1
v
⊤

FG

[

0 1 0
−1 0 0
0 0 0

]

2
vHI ,

b
∗∗

2 := 1
v
⊤

FG

[

1 0 0
0 1 0
0 0 0

]

2
vHI , c

∗∗

2 := 2
v
⊤

GH

[

0 −1 0
1 0 0
0 0 0

]

2
vHI .

(12)

III. TRAJECTORY TRACKING CONTROL

To control the geometry of the LSMS, the temporal evolu-

tion of the cable lengths can be expressed as a function of the

motor angular speeds ωA and ωB, the gearbox ratios iA and

iB, and the spool radii rA and rB

ℓ̇A = −ωAiArA, ℓ̇B = −ωBiBrB. (13)

The negative signs in Equation (13) imply that positive angular

speeds for motors A and B shorten the corresponding cable

lengths. This sign is chosen to match the hardware sign

convention of the LSMS. The time evolution of the different

cable segments are given in Tables I and II, and yield the

following time derivatives of Equation (2):

ℓAE ℓ̇AE = −dAC dCE θ̇1 sinαa(θ1),

ℓAD ℓ̇AD = −dAC dCD θ̇1 sinαb(θ1),

ℓBF ℓ̇BF = −dBC dCF θ̇1 sin γ(θ1),

ℓFJ ℓ̇FJ = −dFG dGJ θ̇2 sinβa(θ2),

ℓFI ℓ̇FI = −dFG dGI θ̇2 sinβb(θ2),

ℓFH ℓ̇FH = −dFG dGH θ̇2 sinβc(θ2).

(14)

To control the off-plane motion of the LSMS, an electrical

motor drives the waist with angular speed ω0. Define the vector

of angular speeds ω := [ω0, ωA, ωB]
⊤

and the vector of joint

errors eθ := [eθ0 , eθ1 , eθ2]
⊤ with

eθi := θi − θdi
, i ∈ {0, 1, 2} , (15)

where θdi
denotes the desired angle for the ith joint of the

LSMS. The terms θdi
are time-parameterized, and are provided

by an algorithm that can generate safe and feasible trajectories

for the LSMS. Then, the control objective is to solve the

following problem:

Definition 1 (Trajectory tracking problem): Design angular

speed commands ωc := [ω0c , ωAc
, ωBc

]
⊤

to drive the joint

error eθ to the origin

‖eθ‖
t→∞
−→ 0. (16)

To maintain the LSMS in a safe and controllable state,

consider the following assumption:

Assumption 1: Cables A and B remain under tension.

Violating Assumption 1 can lead to the sudden collapse

of the forearm onto the arm, or even the tipping of the arm

over the kingpost. The lack of tension on these cables makes

the shoulder and elbow angles not controllable. To guarantee

that Assumption 1 is met, the LSMS implements an envelope

protection algorithm in the trajectory generation phase. This

ensures θ := [θ0, θ1, θ2] ∈ Ωs, where Ωs is the set of angles

for which the LSMS is safe and controllable. Equations (2)

and (14) implicitly consider Assumption 1. For simplicity,

consider also the following assumptions:

Assumption 2: Fixed distances dXY and angles θZ that

describe the geometry of the LSMS are known precisely with

(X,Y ) ∈ {(A,C), (B,C), (C,D), (C,E), (C,F ),

(F,G), (G,H), (G, I), (G, J)} ,

Z ∈ {A,B,D,E, F1, F2, H, I, J} .

(17)

Assumption 3: The underlying motor controllers can track

the angular speed commands precisely, that is ω ≡ ωc.

The consequences of violating Assumptions 2 and 3 are

addressed in Section III-A.

Next, combine Equations (13) and (14) with the last rows

in Tables I and II to derive the temporal evolution of the joint

angles in Equations (18), (19), and (20).

θ̇0 = i0ω0, (18)

θ̇1 =















iArA

dAC dCE

ℓAE

sinαa

ωA, if θ1 ≥ θ∗1 ,

iArA

dAC dCD

ℓAD

sinαb

ωA, if θ1 < θ∗1 .

(19)

The equations of motion for θ1 and θ2 are coupled, nonlinear,

and present discrete switches due to the different spreader

configurations. The two configurations of spreader D and the

three configurations of spreaders H and I produce a total

of six switching conditions for θ̇2. The terms na and nb in

Equation (20) are dimensionless quantities that characterize



θ̇2 =



































































































1

dFG dGJ

ℓFJ(θ2)

sinβa(θ2)
(na(θ1) iArA ωA + iBrB ωB) , if θ1 ≥ θ∗1 ∧ θ2 ≥ θ∗2 ,

1

dFG dGI

ℓFI(θ2)

sinβb(θ2)
(na(θ1) iArA ωA + iBrB ωB) , if θ1 ≥ θ∗1 ∧ θ∗∗2 ≤ θ2 < θ∗2 ,

1

dFG dGH

ℓFH(θ2)

sinβc(θ2)
(na(θ1) iArA ωA + iBrB ωB) , if θ1 ≥ θ∗1 ∧ θ2 < θ∗∗2 ,

1

dFG dGJ

ℓFJ(θ2)

sinβa(θ2)
(nb(θ1) iArA ωA + iBrB ωB) , if θ1 < θ∗1 ∧ θ2 ≥ θ∗2 ,

1

dFG dGI

ℓFI(θ2)

sinβb(θ2)
(nb(θ1) iArA ωA + iBrB ωB) , if θ1 < θ∗1 ∧ θ∗∗2 ≤ θ2 < θ∗2 ,

1

dFG dGH

ℓFH(θ2)

sinβc(θ2)
(nb(θ1) iArA ωA + iBrB ωB) , if θ1 < θ∗1 ∧ θ2 < θ∗∗2 .

(20)

the coupling between θ1 and θ2, for configurations (a) and (b)

of spreader D shown in Figure 3.

na(θ1) := −
dBC dCF

dAC dCE

ℓAE(θ1)

ℓBF (θ1)

sin γ(θ1)

sinαa(θ1)
,

nb(θ1) := −
dBC dCF

dAC dCD

ℓAD(θ1)

ℓBF (θ1)

sin γ(θ1)

sinαb(θ1)
.

(21)

Since na and nb are negative for all θ ∈ Ωs, if ℓA is shortened,

that is ωA > 0, and ℓB is kept constant, that is ωB = 0, then θ2
decreases while θ1 increases, as expected from the geometry

in Figure 4. Next, the error dynamics can be expressed as

ėθ = [θ̇0 − θ̇d0
, θ̇1 − θ̇d1

, θ̇2 − θ̇d2
]⊤. (22)

To solve the trajectory tracking problem consider the control
laws in Equations (23), (24), and (27).

ω0c =
1

i0

(

θ̇d0 − κ0eθ0

)

, (23)

ωAc =















dAC dCE

iArA

sinαa

ℓAE

(

θ̇d1 − κ1eθ1

)

, if θ1 ≥ θ∗1 ,

dAC dCD

iArA

sinαb

ℓAD

(

θ̇d1 − κ1eθ1

)

, if θ1 < θ∗1 .

(24)

The expression for ω0c is a linear proportional control with

a feedforward term, whereas ωAc
and ωBc

are nonlinear,

switched control laws with feedforward terms. The proposed

control laws only require three tuning gains: κ0 for the

waist, κ1 for the shoulder, and κ2 for the elbow. Lemma 1

proves uniform exponential stability of the trajectory tracking

errors. It also proves that the proposed protocol decouples the

shoulder and error dynamics.

Lemma 1: Assumptions 1, 2 and 3, the error dynamics

in (22), and the control laws in Equations (23), (24), and (27)

ensure that

|eθi(t)| = |eθi(t0)|e
−κi(t−t0), ∀i ∈ {0, 1, 2} , t ≥ t0, (25)

with known control gains κ0, κ1, and κ2 > 0.

Proof: The control laws in (24) and (27) decouple the

shoulder and elbow error dynamics, and yield

ėθi = −κieθi =⇒ eθi(t) = eθi(t0)e
−κi(t−t0), (26)

for all i ∈ {0, 1, 2} and t ≥ t0.

Since Assumption 1 restricts the range of motion of the

LSMS to a safe envelope Ωs, the result in Lemma 1 proves

ωBc =
















































































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





m
(

θ̇d1 − κ1eθ1

)

+
dFG dGJ

iBrB

sin βa

ℓFJ

(

θ̇d2 − κ2eθ2

)

, if θ1 ≥ θ∗1 ∧ θ2 ≥ θ∗2 ,

m
(

θ̇d1 − κ1eθ1

)

+
dFG dGI

iBrB

sin βb

ℓFI

(

θ̇d2 − κ2eθ2

)

, if θ1 ≥ θ∗1 ∧ θ∗∗2 ≤ θ2 < θ∗2 ,

m
(

θ̇d1 − κ1eθ1

)

+
dFG dGH

iBrB

sin βc

ℓFH

(

θ̇d2 − κ2eθ2

)

, if θ1 ≥ θ∗1 ∧ θ2 < θ∗∗2 ,

m
(

θ̇d1 − κ1eθ1

)

+
dFG dGJ

iBrB

sin βa

ℓFJ

(

θ̇d2 − κ2eθ2

)

, if θ1 < θ∗1 ∧ θ2 ≥ θ∗2 ,

m
(

θ̇d1 − κ1eθ1

)

+
dFG dGI

iBrB

sin βb

ℓFI

(

θ̇d2 − κ2eθ2

)

, if θ1 < θ∗1 ∧ θ∗∗2 ≤ θ2 < θ∗2 ,

m
(

θ̇d1 − κ1eθ1

)

+
dFG dGH

iBrB

sin βc

ℓFH

(

θ̇d2 − κ2eθ2

)

, if θ1 < θ∗1 ∧ θ2 < θ∗∗2 ,

with m :=
dBC dCF

iBrB

sin γ

ℓBF

. (27)



local uniform exponential stability. The following section re-

laxes Assumptions 2 and 3 to find more realistic performance

bounds for the control law.

A. Relaxation of Assumptions 2 and 3

The geometry of the LSMS is subject to modeling and

manufacturing errors. As a result, the controller has knowledge

of the nominal geometry, which may differ from the real

geometry by a bounded tolerance, as detailed in the following

assumption:

Assumption 4: Nominal distances dXYo
that characterize the

geometry of the LSMS, and angles 0 < νZo
< π have a known

tolerance 0 ≤ ǫ < 1, satisfying

1− ǫ ≤
dXYo

dXY

≤ 1 + ǫ, 1− ǫ ≤
sin νZo

sin νZ

≤ 1 + ǫ, (28)

for all (X,Y ) ∈ {(A,C), (B,C), (F,G)} and all

Z ∈ {A,B, F}. See Figures 3 and 4 for the definition of νA,

νB, and νF .

This assumption lets the control system believe the LSMS

has a spreader configuration that may not match the real

configuration, as long as the error in the estimation of νZ

is bounded. Note that Assumption 4 considers that angles νZ

are bounded away from 0 and π due to the physical design

of the LSMS and the envelope protection algorithm, that is

0 <
¯
νZ ≤ νZ ≤ ν̄Z < π. As a result, the maximum joint

errors are also bounded

|eθi | ≤ ēθ0 , ∀i ∈ {0, 1, 2} , (29)

with ēθ0 := 2π, ēθ1 := θ̄1 −
¯
θ1, and ēθ2 := θ̄2 −

¯
θ2. The

upper and lower bounds for θ1 and θ2 can be derived using

the definition of νA and νB , see Figures 3 and 4, and the values

for
¯
νA and

¯
νF . The choice of angles

¯
νA and

¯
νF is beyond the

scope of this paper.

θ̄1 := 2π − θA − θE − f̄

(

dAC

dCE

,
¯
νA

)

,

¯
θ1 := 2π − θA − θD −

¯
f

(

dAC

dCD

,
¯
νA

)

,

θ̄2 := 2π − θJ − θF2
− f̄

(

dGJ

dFJ

,
¯
νF

)

,

¯
θ2 := 2π − θH − θF2

−
¯
f

(

dGH

dFJ

,
¯
νF

)

.

(30)

Functions f̄ and
¯
f can be obtained combining the law of sines,

the law of cosines, and other trigonometric identities, yielding

f̄(r, ν) := acos
(

r sin2 ν + cos ν
√

1− r2 sin2 ν
)

,

¯
f(r, ν) := acos

(

r sin2 ν − cos ν
√

1− r2 sin2 ν
)

.
(31)

In addition, the motors have unmodelled dynamics and

cannot track the speed commands precisely. Assumption 5

considers a speed tracking error for each motor.

Assumption 5: The underlying motor controllers track the

angular speed commands within a bounded error δi := ωi−ωic

|δi| ≤ δ̄i, i ∈ {0, A,B} . (32)

Next, replace the ideal LSMS parameters by the nominal

counterparts in the control laws (23), (24), and (27), and

substitute into the error dynamics in (22) to arrive at the

following expression:

ėθ0 = −κ0eθ0 + i0δ0, (33a)

ėθ1 = −κ1eθ1 + η1,A δA + η1,1

(

θ̇d1
− κ1eθ1

)

, (33b)

ėθ2 = −κ2eθ2 + η2,A δA + η2,1

(

θ̇d1
− κ1eθ1

)

+ η2,B δB + η2,2

(

θ̇d2
− κ2eθ2

)

, (33c)

with direct perturbation terms

η1,A :=
iArA

dAC sin νA

, η2,B :=
iBrB

dFG sin νF

,

η1,1 :=
dACo

dAC

sin νAo

sin νA

− 1, η2,2 :=
dFGo

dFG

sin νFo

sin νF

− 1,

(34)

and perturbations due to the shoulder-elbow coupling

η2,A := −iA
rAdBC

dAC dFG

sin νB

sin νA sin νF

,

η2,1 :=
dBC

dFG

sin νB

sin νF

(

dBCo

dBC

sin νBo

sin νB

−
dACo

dAC

sin νAo

sin νA

)

.

(35)

Note that angles νA, νB, and νF are shown in Figures 3 and 4,

and the terms sin νA, sin νB , and sin νF above are related to

expressions in Equations (19) and (20) as follows.

sin νA =



















dCE sinαa

ℓAE

, if θ1 ≥ θ∗1 ,

dCD sinαb

ℓAD

, if θ1 < θ∗1 ,

sin νB =
dCF sin γ

ℓBF

,

sin νF =







































dGJ sinβa

ℓFJ

, if θ2 ≥ θ∗2 ,

dGI sinβb

ℓFI

, if θ∗∗2 ≤ θ2 < θ∗2 ,

dGH sinβc

ℓFH

, if θ2 < θ∗∗2 .

(36)

Terms sin νAo
, sin νBo

, and sin νFo
have the same structure.

Simply replace the real geometry above with the nominal

geometry in Assumption 4 to obtain their expressions.

The next theorems combine perturbation and Lyapunov

theory to derive transient and steady-state performance bounds

for the trajectory tracking errors. For simplicity, the results

are separated into two theorems that capture the waist, and

the shoulder-elbow behaviors under non-ideal conditions. The

first theorem proves uniform ultimate boundedness of the waist

trajectory tracking error, see Definition 4.6 in [24].

Theorem 1: Given Assumptions 1, 4, and 5, and the error

dynamics in (33a), if conditions

|eθ0(t0)| < ρ0 and δ̄0 <
κ0

i0
µ0ρ0 (37)



are met with ρ0 = ēθ0 and 0 < µ0 < 1, then there exists a
T0 ≥ 0 such that

|eθ0(t)| ≤ |eθ0(t0)|e
−(1−µ0)κ0(t−t0), ∀t0 ≤ t < t0 + T0,

|eθ0(t)| ≤
i0δ̄0

κ0µ0
, ∀t ≥ t0 + T0.

(38)

Proof: The theorem above results from the application of

Lemma 9.2 in [24] with Lyapunov function V = 1
2e

2
θ0

> 0 for

all eθ0 6= 0.

Note that the guaranteed rate of convergence in Theorem 1

approaches that of Lemma 1 as µ0 approaches 0. However,

as µ0 approaches 0 the ultimate uniform bound increases. In

addition, this bound can be made arbitrarily small using a

combination of two strategies: i) improving the performance

of the waist motor, that is reducing δ̄0; and ii) increasing the

control gain κ0. In the latter strategy, careful consideration

should be given to the drawbacks of high-gain controllers. An

upper bound for T0, which depends on the initial waist error,

can be easily derived using Equation (38).

The second theorem shows that under non-ideal conditions

the shoulder and elbow error dynamics cannot be fully decou-

pled, and are uniformly ultimately bounded. To derive these

results, define the shoulder-elbow errors e := [eθ1 , eθ2]
⊤, the

motor tracking errors δ := [δA, δB]
⊤, and the desired rates

θ̇d := [θ̇d1
, θ̇d2

]⊤, with known bounds ‖δ‖ ≤ δ̄ := (δ2
A
+δ2

B
)

1

2

and ‖θ̇d‖ ≤
¯̇
θd.

Theorem 2: Given Assumptions 1, 4, and 5, and the error

dynamics in (33b) and (33c), if conditions

‖e(t0)‖ < ρ and ηδ δ̄ + ηθ̇d
¯̇
θd < ρµλ, (39)

are met with ρ = (ē2θ1 + ē2θ2)
1

2 and 0 < µ < 1, and the control

gains satisfy

κ2

κ1
≥

4ǫ2

(1− ξ)2
(1 + ǫ)2

(1− ǫ)6

(

dBCo

dFGo

)2 max
νB∈[

¯
νB ,ν̄B ]

sin2 νB

min
νF∈[

¯
νF ,ν̄F ]

sin2 νF

, (40)

with 0 < ξ < 1, then there exist a T ≥ 0 such that

‖e(t)‖ ≤ ‖e(t0)‖e
−(1−µ)λ(t−t0), ∀t0 ≤ t < t0 + T,

‖e(t)‖ ≤
ηδ δ̄ + ηθ̇d

¯̇
θd

µλ
, ∀t ≥ t0 + T,

(41)

with known constants ηδ, ηθ̇d > 0, and rate of convergence

λ := ξ(1 − ǫ)2 min(κ1, κ2). (42)

Proof: To prove the bounds for the shoulder-elbow er-

rors e, consider the Lyapunov candidate V = 1
2e

⊤e > 0 for

all e 6= 0. Its derivative along (33b) and (33c) is

V̇ = −e⊤M1e+ e⊤M2δ + e⊤M3θ̇d, (43)

with matrices

M1 :=
[

κ1(1+η1,1)
1

2
κ1η2,1

1

2
κ1η2,1 κ2(1+η2,2)

]

,

M2 :=
[

η1,A 0
η2,A η2,B

]

, M3 :=
[

η1,1 0
η2,1 η2,2

]

.
(44)

Then, use Assumption 4 to find the following bounds:

(1− ǫ)2 ≤ 1 + η1,1 ≤ (1 + ǫ)2,

(1− ǫ)2 ≤ 1 + η2,2 ≤ (1 + ǫ)2,

η1,A ≤ η̄1,A, η2,1 ≤ η̄2,1,

η2,A ≤ η̄2,A, η2,B ≤ η̄2,B,

(45)

with constants

η̄1,A := iA
rA

dAC

max
νF∈[

¯
νA,ν̄A]

1

sin νA

,

η̄2,1 :=
dBC

dFG

max
νB ,νF

sin νB

sin νF

4ǫ,

η̄2,A := −iA
rAdBC

dAC dFG

min
νA,νB ,νF

sin νB

sin νA sin νF

,

η̄2,B := iB
rB

dFG

max
νF∈[

¯
νF ,ν̄F ]

1

sin νF

.

(46)

Next, define a positive definite matrix

M1 := ξ
[

κ1(1+η1,1) 0

0 κ2(1+η2,2)

]

, (47)

with ξ > 0. Then, use Schur complements, that is Proposition

8.2.4 in [26], and Equation (45) to prove that

ξ < 1,

κ2

κ1
≥

η̄22,1

4(1− ξ)2(1− ǫ)4
,











=⇒ M1 − M
1
≥ 0. (48)

Combine Equations (45) and (48) with the Cauchy-Schwartz

inequality |x⊤y| ≤ ‖x‖‖y‖, the definition of compatible

norms ‖Mz‖ ≤ ‖M‖‖z‖, and the singular value bound

‖M‖ ≤ σmax(M), where x, y, z ∈ R
n and M ∈ R

n×n, to

prove that

V̇ ≤ −λ‖e‖2 + ηδ‖e‖‖δ‖+ ηθ̇d‖e‖‖θ̇d‖, (49)

with constants

σmax(M2) ≤ ηδ := η̄21,A + η̄22,A + η̄22,B,

σmax(M3) ≤ ηθ̇d := η̄21,1 + η̄22,2 + η̄22,1.
(50)

Leverage the upper bounds for ‖δ‖ and ‖θ̇d‖ to write

V̇ ≤ −λ‖e‖2 + ηδ δ̄ ‖e‖+ ηθ̇d
¯̇
θd‖e‖. (51)

Then, for any 0 < µ < 1

V̇ ≤ −(1− µ)λ‖e‖2, ∀ ‖e‖ ≥
ηδ δ̄ + ηθ̇d

¯̇
θd

µλ
. (52)

Algebraic manipulation and the comparison lemma, see

Lemma 3.4 in [24], yield the exponential and ultimate uniform

bounds in Equation (41). Finally, Equation (48) and Assump-

tion 4 yield the bound on κ2

κ1

in this theorem.

Equation (41) limits the allowable disturbances that the

system can sustain to maintain uniform ultimate boundedness.

In this case, a linear combination of the maximum motor

tracking errors and maximum desired joint speeds must be

below a certain threshold, which depends on the guaranteed

rate of convergence. Notice that as µ approaches 0 and ξ

approaches 1, the guaranteed rate of convergence approaches



min(κ1, κ2)(1− ǫ)2. Thus, tolerance ǫ reduces the guaranteed

rate of convergence. In addition, as ǫ approaches 0 so does

ηθ̇d . As a result, the ultimate bound in Equation (41) can be

decreased using a combination of four strategies: i) improving

the performance of the shoulder and elbow motors, that is

reducing δ̄; ii) diminishing uncertainties in the geometric

characterization of the LSMS, that is decreasing ǫ; iii) slowing

down the operations of the LSMS, that is reducing
¯̇
θd; and

iv) increasing κ1 and κ2. Note, however, that this theorem

introduces a constraint on the ratio between the shoulder and

elbow gains. An upper bound for T , which depends on the

initial errors, can be easily derived using Equation (41).

IV. TEST RESULTS

Figures 5 through 8 present the results from a test suite

designed to evaluate the performance of the algorithm on the

LSMS-L35, which is the smaller platform shown in Figure 9.

First, the suite steps through a series of scenarios where

each joint is checked independently. It concludes with a test

that engages all joints simultaneously. The trajectories in

these figures are designed to test all the if else conditions in

Equations (24) and (27). The control law ran at 400 Hz, with

the following choice of control gains:

κ0 = 1.25, κ1 = 3.50, κ2 = 3.50. (53)

Figure 5 shows the results for a trajectory that only moves

the waist. As proven in Section III-A, the waist movement

is decoupled from the shoulder and elbow dynamics. Accord-

ingly, only the waist signals are presented. Figure 5a depicts

the desired and actual joint angles. Figure 5b illustrates the

joint error, and confirms accurate tracking is achieved. At

the extremum points along the trajectory, the tracking error

increases and quickly returns to a small neighborhood around

zero. This is caused by a combination of static friction and

inertial effects that the controller must overcome when the

angular speed of the waist is set to zero. Figure 5c presents

the motor commands. Notice the additional control effort used

to compensate for the tracking errors occurring at the extrema.

Figure 6 shows the results for a trajectory that only engages

the shoulder while the elbow is tasked with maintaining a

constant angle. As proven in Section III-A, the shoulder

and elbow dynamics are coupled. Accordingly, the figure

also contains the elbow signals. As shown in Figure 6a, the

trajectory goes through all the possible spreader configurations

for cable A, which were detailed in Figure 3. The horizontal

bars in the lower part of the figure highlight the spreader

configurations for cable A and B. In this case, the geometry

of cable A goes through two switches from configuration

(a) to (b) and back from (b) to (a) at t = 86.9 s and

t = 154.9 s. The tracking errors for the shoulder and elbow,

pictured in Figure 6b, indicate good tracking performance.

Figure 6c highlights the coupling between the shoulder and

the elbow. As expected from Equation (27), when the shoulder

moves a small command is sent to motor B to maintain

the elbow angle at zero degrees, due to the shoulder-elbow

coupling.

Figure 7 shows the results for a trajectory that only engages

the elbow while the shoulder is tasked with maintaining a fixed

angle. As highlighted in Figure 7a, the trajectory goes through

all the possible spreader configurations for cable B, which

were detailed in Figure 4. In this scenario, the geometry of the

elbow goes through six configuration switches, as shown by

the horizontal bar in the lower part of the image. The errors

in Figure 7b show accurate tracking is achieved. The small

spikes in the elbow error that appear at the switch points from

configuration (b) to (c), and viceversa, are introduced by the

Kalman filter that estimates the state of the LSMS. This filter

is beyond the scope of this paper, but the discrete nature of

the spreader configuration is an added challenge for filtering

techniques. These spikes may be reduced with further tuning,

or a more sophisticated filter specifically designed for hybrid

systems. Figure 7c shows the motor commands. As expected

from Equation (24), the movement of the elbow does not affect

the shoulder angle. The opposite is true, as seen in Figure 6c.

Last, Figure 8 presents the test results for all joints moving

simultaneously. The desired trajectory, shown in Figure 8a,

was designed to test the six possible spreader configurations

detailed in Equation (27). The horizontal bars on the lower

part of the figure cycle through all shoulder and elbow

configurations. The errors in Figure 8b exhibit similar patterns

to those shown in the individual joint tests. Due to the gear

ratio on the different gear boxes, the order of magnitude of the

commands for the shoulder and the elbow is much higher than

that of the waist, as seen in Figure 8c. To properly visualize

the waist command, a second vertical axis has been added on

the right side of the figure.

Figures 5 through 8 indicate that the robot successfully

tracks complex trajectories that respect the LSMS constraints.

Table III provides a summary of the performance parameters

used to evaluate the algorithm. The first column provides a list

of the tests performed. The second, third, and last columns

contain the maximum absolute error, the average absolute

error, and the standard deviation from the mean absolute error

for the waist, shoulder, and elbow across each of the tests.

The maximum tracking errors are below 1.02 degrees for

all runs, and the average tracking errors are always below

0.34 degrees. When a specific trajectory requests that a joint

angle be kept constant, the desired angle rates are zero. In

those scenarios, the trajectory tracking algorithm is leveraged

as a position hold controller. As a result, the position hold

errors for the waist can be extracted from the shoulder only

and elbow only tests. Similarly, the position hold errors for the

shoulder and elbow can be retrieved from the waist only test.

The position hold errors are always below 0.01, 0.11, and 0.13
degrees for the waist, shoulder, and elbow. As expected, these

errors are noticeably smaller than those experienced while

attempting to track a dynamic trajectory. These experimental

results match the theoretical behavior described in Theorems 1

and 2. Future work may include nonlinear integral terms, or

adaptive augmentations to reduce the dynamic errors.

The spreader configuration switches, shown by the horizon-

tal bars on the lower portion of Figures 6 through 8, occur
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Fig. 5: Test results on the LSMS-L35 for a trajectory that only engages the waist.

(a) Desired and measured joint angles. (b) Joint angle errors. (c) Motor speed commands.

Fig. 6: Test results on the LSMS-L35 for a trajectory that only engages the shoulder.

(a) Desired and measured joint angles. (b) Joint angle errors. (c) Motor speed commands.

Fig. 7: Test results on the LSMS-L35 for a trajectory that only engages the elbow.

(a) Desired and measured joint angles. (b) Joint angle errors. (c) Motor speed commands.

Fig. 8: Test results on the LSMS-L35 for a trajectory that engages the waist, shoulder, and elbow simultaneously.



TABLE III: Summary of test results.

Test

max(|θi − θdi |) µ(|θi − θdi |) σ(|θi − θdi |)

[deg] [deg] [deg]

i = 0 i = 1 i = 2 i = 0 i = 1 i = 2 i = 0 i = 1 i = 2

Waist only 0.606 0.108 0.127 0.058 0.020 0.025 0.126 0.026 0.031

Shoulder only 0.007 0.366 0.154 0.003 0.154 0.034 0.002 0.175 0.042

Elbow only 0.006 0.108 0.919 0.005 0.018 0.332 0.001 0.025 0.382

All joints 0.605 0.217 1.020 0.052 0.081 0.327 0.115 0.093 0.381

Fig. 9: LSMS-1000 and LSMS-L35 in the laboratory.

at the angles specified in Table IV. These angles mark where

the algorithm believes a configuration switch occurs. Due to

modeling errors, these values differ slightly from the actual

transition angles, as discussed in Section III-A.

V. CONCLUSION

This paper proposes a nonlinear, switched control law for a

family of cable-driven, articulated robots with long reach. The

nonlinearities are caused by the geometry that relates cable

lengths to joint angles. The hybrid nature of the problem is

introduced by the spreaders and their contact with the cables

under certain configurations. Under ideal conditions, this work

proves local exponential stability of the angle errors for any

feasible trajectory. A global result is not possible due to the

TABLE IV: Transition angles for the cable geometry.

Cable
Transition Value Spreader

angles [deg] contact

A θ∗1 −26.07 D

B
θ∗2 38.93 I

θ∗∗2 −31.26 H

physical limits of this family of cranes, which lose controlla-

bility of the shoulder and elbow angles when the cables are not

under tension. Under realistic assumptions, this work proves

that the trajectory tracking errors are uniformly ultimately

bounded. A single Lyapunov function was found for this type

of hybrid systems, which greatly facilitated the perturbation

analysis. While the nonlinear algorithm with switching condi-

tions leads to a more challenging implementation, the linear

closed-loop dynamics that result in the ideal case can expedite

future developments. For instance, the implementation of an

L1-adaptive augmentation loop that can partially compensate

for unmodelled dynamics and external disturbances. Future

work should also look into the forces and torques exerted

on the structure and how to estimate them, with a special

emphasis on unstructured payloads, like lunar regolith. Future

efforts should also consider the design of algorithms that

directly control the position of the end effector, to ensure

payloads can be picked up and delivered autonomously. To

this end, the inverse kinemtics of the LSMS [9], which have

two possible solutions, are a useful tool to build upon.
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