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Deformed to Make Space
for New Object

(a) Dense Packing by a Human

(b) Dense Packing by a Robot with Tactile Sensors

Fig. 1: Tactile sensing for dense packing. Tactile feedback is critical in tasks with heavy occlusion and rich contact, such as
dense packing. (a) Humans rely on tactile sensations from their hands to navigate space and fit a water bottle into a suitcase.
(b) Likewise, tactile sensing is crucial for robots to perform dense packing tasks, such as placing a can into a packed tray.

Abstract—Tactile feedback is critical for understanding the
dynamics of both rigid and deformable objects in many ma-
nipulation tasks, such as non-prehensile manipulation and dense
packing. We introduce an approach that combines visual and
tactile sensing for robotic manipulation by learning a neural,
tactile-informed dynamics model. Our proposed framework,
RoboPack, employs a recurrent graph neural network to estimate
object states, including particles and object-level latent physics
information, from historical visuo-tactile observations and to
perform future state predictions. Our tactile-informed dynamics
model, learned from real-world data, can solve downstream
robotics tasks with model-predictive control. We demonstrate
our approach on a real robot equipped with a compliant Soft-
Bubble tactile sensor on non-prehensile manipulation and dense
packing tasks, where the robot must infer the physics properties
of objects from direct and indirect interactions. Trained on only
an average of 30 minutes of real-world interaction data per
task, our model can perform online adaptation and make touch-
informed predictions. Through extensive evaluations in both long-
horizon dynamics prediction and real-world manipulation, our
method demonstrates superior effectiveness compared to previous
learning-based and physics-based simulation systems.

I. INTRODUCTION

Imagine packing an item into a nearly full suitcase. As
humans, we typically first form a visual representation of the

scene and then make attempts to insert the object, feeling the
compliance of the objects already inside to decide where and
how to insert the new object. If a particular region feels soft,
we can then apply additional force to make space and squeeze
the new object in. This process is natural for us humans but
very challenging for current robotic systems.

What would it take to produce adept packing capabilities
in robots? Firstly, a robot needs to understand how its actions
will affect the objects in the scene and how those objects will
interact with each other. Dynamics models of the world predict
exactly this: how the state of the world will change based on a
robot’s action. However, most physics-based dynamics models
(e.g., physical simulators), assume full-state information and
typically exhibit significant sim-to-real gaps, especially in
unstructured scenes involving deformable objects.

At the same time, tasks such as dense packing present
significant challenges due to severe occlusions among objects,
creating partially observable scenarios where vision alone is
insufficient to determine the properties of an object, such as its
softness, or assess whether there is space for additional objects.
For effective operation, the robot must integrate information
from its actions and the corresponding tactile sensing into
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its planning procedure. However, the optimal method for
incorporating tactile sensing information into dynamic models
is unclear. Naively integrating tactile sensing into a model’s
state space can perform poorly because the intricate contacts
make tactile modeling a challenging problem, as we will also
show empirically later on.

To tackle these challenges, in this work, we propose to 1)
learn dynamics directly from real physical interaction data
using powerful deep function approximators, 2) equip our
robotic system with a compliant vision-based Soft-Bubble
tactile sensor [22]], and 3) develop a learning-based method for
effective estimation of latent physics information from tactile
feedback in interaction histories.

Because learning dynamics in raw pixel observation space
can be challenging due to the problem’s high dimensionality,
we instead model scenes using keypoint particles [37, 129, 49|
48, 150]. Finding and tracking meaningful keypoint representa-
tions of densely packed scenes over time is itself challenging
due to the proximity of objects and inter-occlusions. In this
work, we extend an optimization-based point tracking system
to preprocess raw observation data into keypoints.

We use the Soft-Bubble tactile sensor [22]], which is ideal for
tasks like dense packing, as it can safely sustain stress from the
handheld object in all directions and provides high-resolution
percepts of the contact force via an embedded RGB-D camera.

Finally, we propose an effective way to incorporate tactile
information into our system by learning a separate state
estimation module that incorporates tactile information from
prior interactions and infers latent physics vectors that contain
information that may be helpful for future prediction. This
allows us to learn tactile-informed dynamics.

We call this system comprising keypoint-based perception,
latent physics vector and state estimation from tactile in-
formation, dynamics prediction, and model-based planning
RoboPack. We deploy RoboPack on two real-world settings—
a tool-use manipulation and a dense packing task. These tasks
involve multi-object interactions with complex dynamics that
cannot be determined from vision alone. Furthermore, these
settings are exceptionally challenging because, unlike prior
work that only estimates the physical properties of the object
held in hand, our tasks also require estimating the physical
properties of objects with which the robot interacts indirectly
through the handheld object.

We find that our method can successfully leverage histo-
ries of visuo-tactile information to improve prediction, with
models trained on just 30 minutes of real-world interaction
data per task on average. Through empirical evaluation, we
demonstrate that RoboPack outperforms previous works on
dynamics learning, an ablation without tactile information, and
physics simulator-based methods in dynamics prediction and
downstream robotic tasks. We further analyze the properties of
the learned latent physics vectors and their relationship with
interaction history length.

II. RELATED WORK
A. Learning Dynamics Models

Simulators developed to model rigid and non-rigid bodies
approximate real-world physics, often creating a significant
sim-to-real gap [S7, [17, 41]. To address this, we use a graph
neural network (GNN)-based dynamics model trained directly
on real-world robot interaction data, aligning with data-driven
approaches for learning physical dynamics [42] 36]. Recent
works have demonstrated inspiring results in learning the
complex dynamics of objects such as clothes [34], ropes [3],
and fluid [26], with various representations including low-
dimensional parameterized shapes [38l]], keypoints [30], latent
vectors [24], and neural radiance fields [31]. RoboPack, in-
spired by previous works [29} 47, 2], focuses on the struc-
tural modeling of objects with minimal assumptions about
underlying physics. This approach overcomes the limitations
of physics simulators by directly learning from real-world dy-
namics. Prior work on GNN-based dynamics learning 48], 49|
50, 1551 16]] heavily relies on visual observations for predicting
object dynamics, failing to capture unobserved latent vari-
ables that affect real-world dynamics, such as object physical
properties. To address this challenge, our method incorporates
tactile sensing into dynamics learning and leverages history
information for state estimation, offering a robust solution to
overcome the constraints of vision-only models.

B. Model-Free and Model-Based Reinforcement Learning

Reinforcement learning (RL) aims to derive policies di-
rectly from interactions. Our method contrasts with model-
free RL approaches [40, 32| [12| [19, 27]], by incorporating
an explicit dynamics model, enhancing interpretability and
including structured priors for improved generalization. Our
work is closer to model-based RL [16} [13, 42, 46, 39, 162]
in that we combine learned world models with planning via
trajectory optimization. In particular, we learn world models in
an offline manner from pre-collected interaction data, avoiding
risky trial-and-error interactions in the real world. However,
our approach is different from existing offline model-based RL
[45L 1591 9L 154} [135] as it leverages multiple sensing modalities,
i.e., tactile and visual perception. This multi-modal approach
provides a more comprehensive understanding of both global
geometry and the intricate local physical interactions between
the robot gripper and objects. Moreover, our method addresses
challenges in scenarios where visual observations are not
always available. It uses tactile observation histories to esti-
mate partially observable states, enabling online adaptation to
different dynamics. This integration of offline model learning,
multi-modal perception, and online adaptation equips our
system with adaptive control behaviors for complex tasks.

C. Tactile Sensing for Robotic Manipulation

Tactile sensing plays an important role in both human and
robot perception [[7]. Among all categories of tactile sensors,
vision-based sensors such as [60, 8, 25, [33]] can achieve
accurate 3D shape perception of their sensing surfaces. In
our work, we use the Soft-Bubble tactile sensor [22] which



(a) 3D Point Tracking on Point Cloud Observations
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Fig. 2: RoboPack’s perception module. (a) We construct a trajectory comprising particle representations of the scene,
maintaining correspondence via 3D point tracking on the point cloud data. (b) These particles facilitate the creation of a
visual scene representation, denoted as o¢**. For points representing the Soft-Bubble grippers, tactile encodings 0%“* and latent
physics vectors are integrated as extra attributes of the particles. We note that while the 3D point tracking module is needed at
training time, during deployment the visual feedback can be replaced by predictions from our state estimator. This estimator
auto-regressively predicts object particle positions from tactile interaction history and reduces reliance on dense visual feedback,

which can be difficult to obtain due to visual occlusions.

offers a unique combination of compliance, lightweight design,
robustness to continuous contact, and the ability to capture
detailed geometric features through high-resolution depth im-
ages [22] [52]]. Previous studies have successfully integrated vi-
sion and tactile feedback in robotic manipulation using parallel
grippers (4, and dexterous hands [44] 53] [61]]. In these
tasks, vision effectively offers a comprehensive understanding
of the scene’s semantics, while tactile sensing delivers accurate
geometry estimation for objects in contact that are often
occluded. In our study, we explore the potential of integrating
vision and tactile feedback for learning dynamics in tasks
involving rich contact, occlusions, and a diverse set of objects
with unknown physical properties, such as box pushing and
dense packing.

III. METHOD

A. Overview

The objective of RoboPack is to manipulate objects with
unknown physical properties in environments with heavy
occlusions like dense packing. To formulate this problem, we
define the observation space as O, the state space as S, and

the action space as .A. Our goal is to learn a state estimator g
that maps O to S and a transition function 7: S x A — S.

To efficiently learn dynamics from real-world multi-object
interaction data, we would like to extract lower-dimensional
representations of observations like keypoints. Furthermore,
we require a mechanism to fuse tactile interaction histories
into these representations without full tactile future prediction.
Finally, to solve real robotic tasks, we need to leverage our
learned model to plan robot actions.

Thus, our system has four main components: perception,
state estimation, dynamics prediction, and model-predictive
control, discussed in Section [[I-B] [[II-C| [I-D] and [II-E|
respectively. They are used together in the following way:

First, the perception system extracts particles from the scene
as a visual representation o0¥** and encodes tactile readings into
latent embeddings o?*“! attached to those particles.

Secondly, the state estimator g infers object states s from
any prior interactions, which includes a single visual frame
0y, the subsequent tactile observations 0%, and the corre-
sponding robot actions aj.;—1:
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Thirdly, to enable model-predictive control, we learn a
dynamics prediction model f that predicts future states given
the estimated current states and potential actions:

St41 = f(§t, at). )

Lastly, the future predictions are used to evaluate and optimize
the cost of sampled action plans. The objective is to find a
sequence of actions aq, ..., ay—1 to minimize a cost function
J between the final states and a given target state s,:

argmin j(T(SOa(GOa"7aH—l))7sg)'
ag,..,aH-1€
(3)

The robot executes the best actions and receives tactile feed-
back from the environment, with which it updates its estimates
about object properties.

(aOa ey aH—l) =

B. Perception

1) Visual Perception: Our visual perception module extends
the formulation of D3Fields [56], with an additional deforma-
tion term to handle non-rigid objects and mask-based closeness
loss to better support multi-object scenes with occlusion.
As shown in Figure @ka), it takes in multi-view RGB-D
observations and outputs tracked 3D keypoints for each object
of interest. Critical for our training procedure, these keypoints
maintain correspondences over time—a tracked point stays at
the same region of an object throughout the trajectory.

First, we extract visual features for each object with a pre-
trained DINOv2 model [43] and masks using Grounded SAM
[43, 21, 35)]. Through projection and interpolation, we can
then compute semantic, instance, and geometric features for
arbitrary 3D points. We initialize desired tracking points on
object surfaces for an initial frame and formulate 3D keypoint
tracking for subsequent frames as an optimization problem.
The tracking objective has the following terms:

« Distance to surface. Use depth information to encourage
points to be close to object surfaces.

« Semantic alignment. Align DINOv2 features between
projected points in the current and initial frame.

« Motion regularization. Penalize large motion between
consecutive frames to avoid jitter.

« Mask consistency. For multi-object packing settings with
significant occlusion, we introduce an objective that con-
strains tracked points to be near the corresponding object
masks, providing more consistent optimization signal for
object pose than semantic alignment.

We optimize a translation and rotation transformation for
each object with this objective. For deformable objects, we
also predict axis-aligned shearing scales apart from a rigid
transformation to track deformations.

2) Tactile Perception: As shown in the top right of Figure 2]
our tactile perception module takes global force-torque and
local force vectors as input and outputs embeddings for the
tactile reading. Each Soft-Bubble tactile sensor provides its
surface force distribution. This includes (1) shear force vectors
{<ngijv qiy,j>}i7j, where i, j is the coordinate of a point on the
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Fig. 3: RoboPack’s dynamics module. We perform state
estimation and dynamics reasoning with a state estimator and
a dynamics predictor respectively. (a) The state estimator auto-
regressively predicts the positions of objects’ particles and
their latent physics vectors, reducing the dependency on dense
visual feedback. (b) The dynamics predictor, conditioned on
the estimated physics vectors, performs future prediction for
planning. These modules share the same architecture, except
that the state estimator has an LSTM that integrates history
information and predicts physics parameters for each object.

2D surface of the bubble and x,y denote the vertical and
horizontal axis of the tangent plane at that point, as well as
(2) a global shear force torque vector and the overall force
magnitude (Q%, QY,|Q]). F*, FY are the mean of local force
vectors across spatial dimensions, and |@| is defined as

2
Q| = \/max a7 ;|” + max |g! |, @)
] 2,7

3) Integrating Visual and Tactile Perception: As depicted
in Figure 2[b), to integrate tactile observations with particle-
based object representation, we first extract particles from the
surface of the soft-bubble gripper by projecting the depth cam-
era reading inside the gripper into 3D space. Next, we define a
point-wise tactile signal as (g7 ;, qgj, Q%,QY,|Q|) and train an
auto-encoder that maps the point-wise signals independently
into latent embeddings. Details regarding the auto-encoder
architecture and training are available in Appendix [A-A] We
denote the collection of embeddings as the tactile observation
ot Lastly, we combine the object particles from the visual
observation 0”** with the tactile sensor particles 0'%“* to form
a unified particle representation of the scene.

C. State Estimation and Latent Physics Vector Inference

In real-world robotic manipulation, visual observations are
not always available due to occlusion, but knowledge about
object dynamics requires interactive feedback. In this work,
we leverage tactile feedback to help estimate world states.

History information is often used to estimate the current
state in POMDPs [1} [18 23, 51]. Similarly, we seek to
incorporate tactile history information into state estimation by
employing a combination of graph neural networks (GNNs)
and long-short term memory (LSTM), as shown in Figure[3{a).



We define our state as a tuple of object particles and an object-
level latent physics vector, which capture the geometry and
physics properties of objects respectively. In the following
paragraphs, we describe how our method performs state es-
timation using history information and future prediction.

At time 0 < t < T, our state estimator g infers all states
for t = 1,...,T autoregressively. Given the estimated previous
state S;_1 and the tactile feedback at the previous and the cur-
rent state 0i*.,, we construct a graph Gy_1 = (V;_1, F}_1)
with V,_; as vertices and F;_; as edges. For each node,
Vig—1 = <33¢,t71702’,t_1>, where x; ;1 is the particle position
i at time t — 1, and ¢7,_, are particle attributes. The particle
attributes contain (1) the previous and current tactile readings,
ot ., and (2) the latent physics vector of the object that
the particle belongs to, £aq,,:—1, where M, is the object
index corresponds to the i-th particle, 1 < M; < Z and
Z is the maximum number of objects in the scene. Formally,
4y = (&—1,0t%.,). Note that here we implicitly assume
that M is constant (i.e., objects only exhibit elastic and plastic
deformations but not break apart), which generally holds for a
large number of common manipulation tasks. Moreover, edges
between pairs of particles are denoted ey, = (uy, vg), where uy
and vy, are the receiver and sender particle indices respectively,
and 1 < wug,vr < |Vi—1| where k is the edge index. We
construct graphs by connecting any nodes within a certain
radius of each other.

Given the graph, we first use a node encoder f{"*¢ and
an edge encoder fi“ to obtain node and edge features,
respectively:

i1 = Vi), b = fE(ere1). (5)
Then, the features are propagated through the edges in
multiple steps, during which node effects are processed by
neighboring nodes through learned MLPs. We summarize this
procedure as f#°¢, which outputs an aggregated effect feature
for each node called ¢;:

'Lt 17§ hkt 1k

keN;
where N is a set of relations with particle 4 as the receiver.
Next, the model predicts node (particle) positions and
updates the latent physics vector:

Gi—1 = Loo|Eal-  (6)

AV d.
O;}’Zt‘s: e (hvt 13¢lt 1) 1,..,Vica |’ (7)
d
§n,t7mt f e E hzt 1 g ¢i,t717mt71
i
Mi= Mi=n n=1,..,2
3

where fgec is an LSTM, m; is its internal cell state at the
current step, and &, ; is the updated physics latent vector for
n-th object. At ¢ = 0 the LSTM state my is initialized as zero.
The physics vector for each object is initialized as Gaussian
noise: &,0 ~ N(0,0.1%) for all 7. All other encoder and
decoder functions (i.e., f&¢, fdec, f&rc, and fd¢°) are MLPs.

D. Dynamics Prediction

After the state estimator produces an estimated state Sp =
(6%, &) from the T-step history, our dynamics model pre-
dicts into the future to evaluate potential action plans. The
dynamics predictor f is constructed similarly to the state
estimator g, with two key differences: (i) it does not use
tactile observations as input, and (ii) it is conditioned on
frozen physics parameters estimated by g. Figure [3] illustrates
this process. The forward prediction happens recursively: For
a step ¢ > T, we construct a graph in the same way as
in Section but excluding tactile observations from the
particle attributes, i.e., Cf,t = &;. Then, the dynamics predictor
infers the particle positions at the next step éfj:l as formulated
in Equations The final state prediction is then 3,1 =
<6}’fl, &:). Note that the estimated physics parameters are not
modified by the dynamics predictor.

Training procedure and objective. We train the state
estimator and dynamics predictor jointly end-to-end on tra-
jectories of sequential interaction data containing observations
and robot actions. For a training trajectory of length H, the
state estimator estimates the first 7' states, and the dynamics
predictor predicts all remaining states. The estimation and pre-
diction are all computed autoregressively. The loss is computed
only on visual observations:

H Z ||Am€ _ meHQ )

Previous works [48] 150, |49] use the earth mover’s distance
(EMD) or chamfer distance (CD) as the training loss, but these
provide noisier gradients because EMD requires estimating
point-to-point correspondence and CD is prone to outliers.
Instead, we use mean squared error (MSE) as the objective,
enabled by the point-to-point correspondences from our 3D
point tracking (Section [[II-B). The details of the architecture
and training procedure of the state estimator and dynamics
predictor are in Appendix

Note that the learning of the latent physics information is
not explicitly supervised. The model is allowed to identify any
latent parameters that enhance its ability to accurately estimate
the current state and predict future outcomes. We provide an
analysis on the learned physics parameters in Section [V]

E. Model-Predictive Control

With the learned state estimator and dynamics predictor,
we perform planning toward a particular goal by optimizing a
cost function on predicted states over potential future actions.
Concretely, we use Model Predictive Path Integral (MPPI) to
perform this optimization [58].

Planning begins with sampling actions from an initial dis-
tribution performing forward prediction with the dynamics
models. The cost is then computed on predicted states. Based
on the estimated costs, we re-weight the action samples by
importance sampling and update the distribution parameters.
The process repeats for multiple interactions and we select the
optimal execution plan.



Fig. 4: Hardware overview. Our experimental platform con-
sists of a Franka Panda arm, two Soft-Bubble sensors, four
RealSense D415 RGB-D cameras, and a diverse set of objects.

For computational efficiency, we execute the first K plan-
ning steps. While executing the actions, the robot records its
tactile readings. After execution, it performs state estimation
with the history of observations and re-plans for the next
execution. More implementation details on planning can be
found in Appendix [C|

To summarize this section, a diagram of the entire system
workflow including training and test-time deployment is avail-
able in Figure [I0}

IV. EXPERIMENTAL SETUP
A. Physical Setup

We set up our system on a Franka Emika Panda 7-DoF
robotic arm. We use four Intel RealSense D415 cameras
surrounding the robot and a pair of Soft-Bubble sensors for
tactile feedback. We use 3D-printed connectors to attach the
Soft-Bubble sensors to the robot. Each Soft-Bubble has a built-
in RealSense D405 RGB-D camera. The RGB data are post-
processed with an optical flow computation to approximate the
force distribution over the bubble surface [22]. Our hardware
setup is depicted in Figure {4}

B. Task Description

We demonstrate our method on two tasks where the robot
needs to handle objects with unknown physical properties and
significant visual occlusion: manipulating a box with an in-
hand tool and dense packing.

1) Non-Prehensile Box Pushing: This task focuses on ma-
nipulating rigid objects with varying mass distributions using
an in-hand rod. The objective is to push a box to a goal pose
with the minimum number of pushes. The robot has access
to tactile feedback at all steps but only visual observations in
between pushes, which corresponds to the real-world feedback
loop frequency. The task is much more challenging than usual
pushing tasks because (i) the boxes have different dynamics

(a) Training Object Set

(b) Test Object Set

Fig. 5: Object sets for the packing task. The test objects are
more complex than the training set visually, geometrically, and
physically, to showcase the generalizability of our model.

yet the same visual appearance; (ii) the robot has little visual
feedback to identify box configurations; and (iii) the in-
hand object can rotate and slip due to the highly compliant
Soft-Bubble grippers. This is why we emphasize that our
task is non-prehensile. This leads to rather complex physics
interactions. To achieve effective planning, the robot needs to
identify the box’s properties from the tactile interaction history
and adjust its predictions of the rod and box poses.

We experiment with four boxes, each equipped with varying
calibration weights attached to their inner layers to control
their dynamics. We train our model on three of these boxes
with identical visual appearances. During evaluation, we test
our method on all four boxes including an additional one with
a distinct visual appearance and mass distribution.

2) Dense Packing: The goal of this task is to place an
additional object in an already densely packed box. Due
to heavy occlusions during task execution, the robot does
not have access to meaningful visual feedback during robot
execution other than the initial frame, but again tactile signals
are always observed. To place the object into the occupied box,
the robot needs to identify potentially deformable regions with
tactile information and make space for the object via pushing
actions. The robot needs to avoid inserting into infeasible
regions to prevent hardware and object damage. We specify
the box that contains the object as the goal and the robot can
insert the object at any position as long as it fits inside.

To test the generalizability of learned models, we create
train and test object sets (Figure[3). The test objects differ from
the training objects in of visual appearance, surface geometry,
and physical properties. During evaluation, we consider sce-
narios with only training objects and those with half or more
of objects from the test set.

C. Data Collection

To generate diverse and safe interaction behaviors, we
use human teleoperation for data collection. In the Non-
Prehensile Box Pushing task, for each weight configuration,
we gather random interaction data for around 15 minutes. By
“random", we refer to the absence of labels typically present in
demonstration data. During these interactions, the end-effector
approaches the box from various angles and contact locations,
yielding diverse outcomes including translation and rotation,
as well as relative movements between the in-hand object and



the bubble gripper. The dataset contains approximately 12000
total frames of interaction.

For dense packing, we collect approximately 20 minutes of
teleoperated random interaction data with five unique objects,
randomizing the initial configurations of the objects at the
beginning of each interaction episode. Each episode includes
various attempts at packing an object into the box and includes
pushing and deforming objects, as well as in-hand slipping
of the in-hand object in some trials. The dataset contains
approximately 6000 total frames of interaction.

D. Action Space

Though our dynamics model is orthogonal to the action
space, suitable action abstractions are important for efficient
planning and execution.

1) Non-Prehensile Box Pushing: To reduce the planning
horizon and number of optimized parameters, we sample
macro-actions during planning, which are defined as a linear
push and represented by i,6,a, where ¢ refers to the box
particle index for end effector contact, # denotes the angle
of the push trajectory relative to the x-axis, and « represents
the fraction of the distance covered before end effector-box
contact along the entire push length. For dynamics prediction,
the macro action is decomposed into smaller motions.

2) Dense Packing: As this task involves a large state space,
we constrain the action space for planning efficiency. We first
identify the outer objects in the box and compute feasible
starting positions of actions nudging each object, determined
by the geometric center of the object and its approximate
radius. Then we sample straight-line push actions of varying
lengths from each contact point towards the respective object
centers. Similarly, the long push action is divided into small
movements for dynamics prediction.

E. Planning Cost Functions

1) Non-Prehensile Box Pushing: We specify the goal state
as a point cloud and use MSE as the cost function.

2) Dense Packing: We specify a 2D goal region by uni-
formly sampling points in the area underneath the tray. We use
a cost function that (i) penalizes the objects in the box from
being pushed out of the boundary, (ii) encourages the robot
to make space for placing the in-hand object by maximizing
the distance from target to object points, and (iii) rewards
exploring different starting action positions. Mathematically,
the loss function is

0¢,0q,01) = min ||z — — min ||z —
T (0r,050) = 3 min [lo = ylle = 3 minfz = ylla
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where 0, is the predicted object particles in the box, o, is the
target point cloud, ||ag ¢||2 is the size of the first action, which
is zero if it does not plan to switch to a different contact row,
r is a negative constant, and 1 is an indicator function.

V. EXPERIMENTS

In this section, we investigate the following questions.

i. Does integrating tactile sensing information from prior
interactions improve future prediction accuracy?

ii. Do the latent representations learned by tactile dynamics
models discover meaningful properties such as the phys-
ical properties of objects?

iii. Does our tactile-informed model-predictive control
framework enable robots to solve tasks involving objects
of unknown physical properties?

We first introduce our baselines and then present empirical

results in the subsequent subsections.

A. Baselines and Prior Methods

We compare our approach against three prior methods and
baselines, including ablated versions of our model, previous
work on dynamics learning, and a physics-based simulator:

i. RoboPack (no tactile): To study the effects of using tac-
tile sensing in state estimation and dynamics prediction,
we evaluate this ablation of our method, which zeroes out
tactile input to the model.

ii. RoboCook + tactile: This approach differs from ours
in that it treats the observations, i.e., visual and tactile
observations {0V, 0@t directly as the state representa-
tion, whereas RoboPack assumes partial observability of
the underlying state and performs explicit state estima-
tion. This can be viewed as an adaptation of previous
work [29, 48], 150, 49] to include an additional tactile
observation component. With this baseline, we seek to
study different state representations and our strategy of
separating state estimation from dynamics prediction.

iii. Physics-based simulator: We also compare our method
to using a physics-based simulator for dynamics pre-
diction after performing system identification of explicit
physical parameters. We use heuristics to convert ob-
served point clouds into body positions and orientations
in the 2D physics simulator Pymunk [3]]. For system
identification, we estimate the mass, center of gravity,
and friction parameters from the initial and current visual
observations with covariance matrix adaptation [14].

The considered methods, including our approach, share
some conceptual components with prior offline model-based
reinforcement learning (RL) methods (Section , although
with very different concrete instantiations. Each method either
learns the full environment dynamics, or in the case of Physics-
based simulator, performs system identification from a static
dataset. All compared methods use the dynamics models to
perform model-predictive control via sampling-based plan-
ning. Specifically, RoboPack (no tactile) can be framed as
a model-based RL method (e.g., [59} (11} 9]) that uses only
sparse visual observations for model learning. On the other
hand, RoboCook + tactile treats visual and tactile observations
as the state, overlooking the partially observable nature of the
task. Our upcoming results demonstrate that our integration
of multi-modal perception and physical parameter estimation
leads to superior performance in challenging task domains.



Task  Method MSE #1e-3 | EMD *le-2 | CD *le-2 |

RoboPack 148 + 0.14 297 + 0.14 3.46 £ 0.13

Box  RoboPack (no tactile) 1.75 + 0.15 3.34 +0.15 3.80 £ 0.13
Pushing RoboCook + tactile 211 £0.17 432 £0.16 540 £ 0.16
Physics-based sim. 265+ 0.18 4.11 £0.17 457 £0.16

Dense RoboPack 0.070 £ 0.005 1.12 + 0.036 2.01 £ 0.050
Packing RoboPack (no tactile) 0.088 + 0.006 1.18 £ 0.043 2.04 £ 0.058

TABLE I: Long-horizon dynamics prediction results on the
two task datasets. Errors represent a 95% confidence interval.

B. Evaluating Dynamics Prediction

Results are summarized in Table [l On the Non-Prehensile
Box Pushing task, RoboPack is significantly better than al-
ternative methods in all metrics. Compared to RoboPack (no
tactile), RoboPack can better estimate the mass distribution of
the boxes, which is crucial in predicting the translation and
rotation accurately. In contrast, when using tactile and visual
observations directly as the state representation (RoboCook +
tactile), the performance is even worse than RoboPack without
tactile information. We hypothesize that this is because the
model has very high errors in learning to predict future tactile
readings because of the intricate local interactions between the
Soft-Bubble grippers and the object. The difficulty in learning
to predict tactile reading may distract the model from learning
to predict visual observations accurately.

Comparing RoboPack to a physics-based simulator baseline,
we find that the simulator performs poorly on dynamics
prediction for a few potential reasons, including (i) limited
visual feedback for performing system ID, and (ii) the sim-
ulator’s parameter space may not capture the full range of
real-world dynamics given the complex interactions between
the compliant bubble and in-hand tool and rotating tool and
the box. To illustrate the difference in model predictions,
qualitative results are presented in Figure [6]

For the Dense Packing task, our model outperforms the best
baseline on the pushing task, RoboPack (no tactile). We note
that in this task, object movements are minimal and object
deformation is the major source of particle motions. Metrics
such as EMD and CD that emphasize global shape and distri-
bution but are insensitive to subtle positional changes cannot
differentiate the two methods in a statistically significant way.
However, for the MSE loss, which measures prediction error
for every point, RoboPack is significantly better than the
baseline, indicating its ability to capture fine details of object
deformation. This subtle performance difference between the
two methods in dynamics prediction turns out to have a
significant effect on real-world planning (Section [V-D).

C. Analysis of Learned Physics Parameters

In this subsection, we seek to provide some quantitative
and qualitative analyses of the latent representation learned by
the state estimator. As it gives more direct control of object
properties, we use our dataset collected for the Non-Prehensile
Box Pushing task for the analysis.

To understand if the representation contains information
about box types, we first attempt to train a linear classifier to

Physics
Simulator

RoboPack  RoboPack RoboCook +

Ground Truth

Fig. 6: Qualitative results on

dynamics prediction. Pre-
dictions made by our model compared to baseline methods
in the Non-prehensile Box Pushing task. Red dots indicate
the rod and blue dots represent the box. Our method closely
approximates the ground truth and outperforms all the baseline
methods. For visualization, the blue dashed lines outline box
contours and red dashed lines show in-hand object contours.

test if there the features learned for different boxes are linearly
separable in the latent space. We test the state estimator
on 145-step trajectories in the testing data, which typically
involves three to five pushes on the box. The classification
accuracy of physics parameters & as more and more in-
teraction information is processed is shown in Figure [7} It
can be observed that as history information accumulates, the
latent physics vectors become more indicative of the box
type. In particular, the state estimator can extract considerable
information in the first 20 steps, which is approximately the
average number of steps it takes to complete an initial push.
Furthermore, note that the state estimator only observes a
history of no more than 25 steps during training, but it can
generalize to sequences four times longer in this case.

To qualitatively inspect the learned representations, we
perform principal component analysis, reducing the learned
latent vectors from R'® to R2. Figure [7| shows the low-
dimensional embeddings as the number of interaction time
steps incorporated into the latents grows. We can see that
as time progresses, the estimated latents become increasingly
separated into clusters based on the physical properties (i.e.,
mass distributions in this case) of the manipulated object. The
separation increases the most between ¢ = 1 and ¢t = 20,
which is consistent with our observation in Figure[7]that longer
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Fig. 7: Analysis of learned physics parameters. We assess our state estimator across 145-step trajectories and record the
estimated physics parameters at each step. PCA visualizations at four distinct timesteps show that the physics parameters
gradually form clusters by box type. We also employ a linear classifier trained on these parameters to accurately predict box
types to demonstrate these clusters’ linear separability. The classifier’s improving accuracy across timesteps underscores the

state estimator’s proficiency in extracting and integrating box-specific information from the tactile observation history.

Method Metric Box 1 Box 2 Box 3 Box 4 (unseen) Aggregated
MSE | 0.0164 + 0.004 0.0165 + 0.004 0.0137 + 0.003 0.0156 + 0.001  0.0156 + 0.002
RoboPack # Pushes | 5.0 £ 1.20 540 £ 1.49 4.8 &+ 1.24 6.0 £ 1.10 5.3 + 0.64
Success Rate 1 41/5 41/5 4/5 41/5 16 / 20
MSE | 0.0612 + 0.027  0.0141 + 0.003  0.0250 + 0.001  0.0264 + 0.005  0.0317 £ 0.008
RoboPack (no tactile) # Pushes | 8.2 £+ 0.99 5.0 + 2.82 100 £ 0 8.2 £ 1.07 7.85 £+ 0.63
Success Rate T 2/5 4/5 0/5 2/5 8720
MSE | 0.0459 + 0.018  0.0607 + 0.022  0.0418 + 0.009  0.0438 + 0.017  0.0480 £ 0.009
RoboCook + tactile # Pushes | 8.2 + 1.21 74 + 1.73 9.2 £0.72 8.8 + 1.07 8.4 + 0.64
Success Rate 1 2/5 2/5 1/5 1/5 6/20
MSE | 0.0237 + 0.004  0.0184 = 0.003  0.0273 + 0.012  0.0220 = 0.004  0.0230 £ 0.003
Physics-based simulator  # Pushes | 8.4+ 092 6.0 £ 0.18 74 £ 1.19 74 £+ 1.49 7.3 £0.71
Success Rate T 2/5 3/5 3/5 2/5 10/ 20

TABLE II: Per-configuration results on the non-prehensile box pushing task. We report the minimum error to goal across
10 plan executions per trial, trial success rates, and number of execution steps to solve the task. A trial is labeled as a success
if it achieves an error lower than 0.02 for point-wise MSE within 10 pushes.

histories than a certain threshold yield marginal returns.

Collectively, the results indicate that our state estimator
indeed learns information related to physical properties based
on interaction histories.

D. Benchmarking Real-World Planning Performance

Next, we evaluate the performance of our approach in
solving real-world robotic planning tasks.

For Non-Prehensile Box Pushing, we present quantitative
results in Figure 0] and Table [ll We can see that our method
both achieves lower final error as measured by point-wise MSE
(Table[MT) and makes progress toward goals more quickly (Fig-
ure [0) than other methods. The gap in performance between
our model and RoboPack (no tactile) demonstrates the benefits
of using tactile sensing in this task. While the physics-based
simulator achieves the strongest performance of the baselines,
it is not able to achieve as precise control as our method, taking

more pushes to finish the task yet ending with higher MSE
loss. We hypothesize this is because it can only infer dynamics
of limited complexity via properties such as friction or mass
center/moment. It also requires significant manual designs to
construct the simulation for each task. Finally, RoboCook +
tactile has the poorest control performance, consistent with its
high dynamics prediction error on the test set. We hypothesize
that the poor performance of this method is due to the difficulty
of learning to predict future tactile observations, which are
high-dimensional and sensitive to precise contact details.

For the Dense Packing task, we would ideally compare
our method against the baseline with the best results on non-
prehensile box pushing: the physics-based simulator. However,
this is impractical for this task, because it is infeasible to obtain
corresponding object models for the diverse and complex
objects in this task or to estimate objects’ explicit physics
parameters without visual feedback. Thus, we compare against
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Fig. 8: Non-prehensile box pushing and dense packing. In the Non-prehensile Box Pushing task, we demonstrate that our
robot can push a box with unknown mass distribution from a starting pose to a target pose. We show that our method can
generalize to unseen targets and box configurations in the first two rows. In the Dense Packing task, we demonstrate that
RoboPack effectively identifies feasible insertion rows in a tray, minimizing excessive force to prevent hardware damage for
incorrect contact locations while taking pushing actions decisively at correct contact points for efficient task completion. The
last two rows illustrate that our method can adapt to objects with different visual appearances, shapes, and deformability.

Planning Performance on Box Pushing Task
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Fig. 9: Real-world planning performance on the box push-
ing task. Shaded regions denote the first and third quantiles.
Note that different methods generally perform well on easier
cases, leading to overlap between shadow regions. Our method
has stable performance even for hard ones: its 75-percentile
error is lower than the mean error of all other methods.

Method Seen Objects Unseen Objects
RoboPack 12/15 10/15
RoboPack (no tactile) 6/15 5/15

TABLE III: Success rates on the dense packing task. In
the Unseen Objects setting, half or more of the objects in the
tray are unseen. A trial is considered successful if the robot
correctly determines feasible insertion locations and creates
enough space (through deformation) to pack the object. The
robot automatically attempts to pack the object when its end
effector y-position exceeds a given threshold.

the best among the remaining baselines instead, i.e., RoboPack
(no tactile). We test on scenarios containing only training
objects (Seen Objects) as well as scenarios where half or more
of the objects are from the test set (Unseen Objects). Results
on both settings, shown in Table m indicate that our method
is more effective in identifying objects that are deformable
or pushable, which consequently enables the robot to insert
the object at feasible locations. Examples of our experiments
are illustrated in Figure [8] Despite our method having only
seen rectangular boxes and plastic bags in the training set,



it can generalize to objects with different visual appearances,
geometries, and physical properties, such as the cups, cloth,
and hat in the examples.

VI. DISCUSSION

We presented RoboPack, a framework for learning tactile-
informed dynamics models for manipulating objects in multi-
object scenes with varied physical properties. By integrating
information from prior interactions from a compliant visual
tactile sensor, our method adaptively updates estimated latent
physics parameters, resulting in improved physical prediction
and downstream planning performance on two challenging
manipulation tasks, Non-Prehensile Box Pushing and Dense
Packing. We hope that this is a step towards robots that can
seamlessly integrate information with multiple modalities from
their environments to guide their decision-making.

In this paper we demonstrated our approach on two specific
tasks, but our framework is generally applicable to robotic
manipulation tasks using visual and tactile perception. To
extend it to other tasks, one needs to adapt the cost function
and planning module to the task setup, but the perception, state
estimation, and dynamics prediction components are general
and task-agnostic. For future work, we seek to develop dy-
namics models that can efficiently process higher-fidelity par-
ticles to model fine-grained object deformations. Integrating
alternative trajectory optimization methods with our learned
differentiable neural dynamics models is another promising
direction. Finally, incorporating additional physics priors into
the dynamics model could further improve generalization.
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APPENDIX A
MODEL ARCHITECTURE AND TRAINING

A. Tactile Autoencoder

Both the encoder and decoder are two-layer MLPs with
hidden dimension 32 and ReLU activations. The encoder
maps the raw point-wise tactile signal to latent space, then
the decoder maps it back to the original dimension. The
autoencoder is trained with MSE loss using the following
hyper-parameters:

Hyperparameter Value
Learning rate Se-4
Optimizer Adam [20]
Batch size 32
Latent space dimension 5

TABLE IV: Hyperparameters for auto-encoder training.

B. State Estimator and Dynamics Predictor

We use the same hyperparameters to train dynamics models
for the nonprehensile box pushing and dense packing tasks,
which are shown in Table For graph construction, we
connect any points within a radius of 0.15. We train the
state estimator and dynamics model jointly, using sequences
of length 25. To prevent the model from overfitting to a
specific history length, which could vary at deployment time,
we use the first k& steps in a sequence as the history, & ~
Uniform(0, 24). To stabilize training, we restrict the magnitude
of the rotation component of predicted rigid transformations
for a single step to be at most 30 degrees, which is much larger
than any rotation that occurs in our datasets. Model training
converges within 25 and 8 hours on the two tasks respectively
with one NVIDIA RTX A5000 GPU.

For baselines RoboPack (no tactile) and RoboCook + tactile,
we performed a hyper-parameter sweep and the optimal train-
ing parameters are the same as RoboPack described above.

Hyperparameter Value
Learning rate Se-4
Optimizer Adam [20]
Batch size 4
Graph construction criteria Radius
Graph connection radius 0.15m
Training sequence length 25 steps
Training history length 15 steps
# graph points per object 20
# graph points per tactile sensor 20
Node encoder MLP width 150
Node encoder MLP layers 3
Edge encoder MLP width 150
Edge encoder MLP layers 3
Edge effect MLP width 150
Edge effect MLP layers 3
Edge propagation steps 3
Latent physics vector size (dim(&)) 16
Tactile encoding dimension (per point in 0t@<t) 5

TABLE V: Hyperparameters for dynamics model training.
We use the same hyperparameters for the nonprehensile box
pushing and dense packing tasks.

APPENDIX B
HARDWARE SETUP

The hardware setup is depicted in Figure []in the main text.

Robot. We use a Franka Emika Panda robot arm, controlled
using the Deoxys open-source controller library [63]. In our
experiments, we use the OSC_POSITION and OSC_YAW
controllers provided by the Deoxys library.

Sensors. We attach the Soft-Bubble sensors to the Franka
Panda gripper using custom-designed 3D-printed adapters. We
inflate both Soft-Bubble sensors to a width of 45Smm measured
from the largest distance sensor frame to the rubber sensor
surface. While there can be slight variations in the exact
amount of air in the sensor due to measurement error, we
do not find this to be a significant cause of domain shift for
learned models, likely because the signals that are used as
input to our model are largely calculated using differences
between the current reading and a reference frame captured
when the gripper does not make contact with any object that
we reset upon each inflation. While we contribute a novel
method for integrating tactile information into the particle-
based scene representation, the computation of raw tactile
features described in Section |[II-B2|are computed by the Soft-
Bubble sensor API [22]] and is not part of our contribution.

APPENDIX C
PLANNING IMPLEMENTATION DETAILS

We provide hyperparameters for the MPPI optimizer that is
used for planning with learned dynamics models in Table
We use the same planning hyperparameters for baselines as
we do our method.

Hyperparameter Box pushing  Dense packing
History length 22 25
Action sampler temporal correlation [3* 0.2 N/A
MPPI # action samples 400 150
MPPI action horizon 20 80
MPPI # iterations 2 1
MPPI scaling temperature ~* 100 N/A
# steps executed before replanning K 20 45

TABLE VI: Hyperparameters for real world planning ex-
periments. For the parameters denoted by *, we use the nota-
tion from Nagabandi et al. [42]]. As introduced in Section [I[TI-E}
K refers to the number of steps in the best plan found that is
actually executed on the real robot before replanning. For box
pushing it is the entire plan, while for dense packing it is 45
out of 80 steps.

APPENDIX D
SYSTEM WORKFLOW
To present the offline training and online planning processes
more clearly, a system diagram is provided in Figure [T0]
APPENDIX E
EXPERIMENTS
A. Box Configurations

For the non-prehensile box pushing task, we use boxes that
have the same geometry different weight configurations to test
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Fig. 10: The complete workflow of the RoboPack system. There are two main stages of the system: (a) offline training and

(b) online planning.

the ability of each model to adapt its prediction based on
the physical characteristics of each scenario. Specifically, we
empty cardboard boxes of dimensions 18 x 9.5 x 3.8 cm, and
then add metal weights in the following configurations:
o Box 1: Two 100g weights placed at opposing corners of
the box.
« Box 2: One 200g weight placed at the geometric center
of the box.
« Box 3: No additional weight added.
¢ Box 4 (unseen during training): This is the original
unmodified box, which contains roughly uniformly dis-
tributed food items. The items are not affixed to the inner
sides of the box, and there could be relative movement
between the box and its contents if force is applied.

B. Qualitative Results on Planning

Additional qualitative results on non-prehensile box pushing
and dense packing are presented in Figure and Figure
respectively. Please additionally see our supplementary video
for video examples of planning executions.

C. Physics-Based Simulator Baseline

Here we provide additional details about the physics-based
simulator baseline used for the box pushing experiments in
Section [V]

First, we construct a 2D version of the task in the open
source Pymunk simulator [3] that emulates a top-down view
of the real scene. The simulated scene contains replicas of the
rod and box produced by measuring the dimensions of the real
versions of those objects.

Then, given two visual observations oY%, and O%fml(tracked
points for each object) and a sequence of actions @ taken
by the robot, we perform system identification to optimize
simulated parameters to fit the real system. Note that our
method also uses only two visual observations from the
history, but also can use tactile information. Because tactile
simulation is not available, the baseline has access to just
visual observations. To convert tracked points from real ob-
servations into simulator states, we project all points into 2D
by truncating the z dimension, and then for each object we
compute the object center with the spatial mean of points and
the 2D rotation by finding the first two principal components
of the 2D points with PCA. Thus the visual observations

: rod rod box box
are converted into tuples (posio?, rotio%), (pos;°,, rot;°%),

(posg"(z?rdmh TOt;?;iLal)’ (posl}(;frcmh TOt?‘(;;czal)’

We optimize a vector of parameters i € R, detailed in
Table [VII We de-normalize values from m7u to the actual
system parameters and clamp them to prevent unrealistic
values based on the minimum and maximum values shown.
The initial standard deviation for optimization is ¢ = 0.3,
which we found to work well empirically. The objective
function is

L(ji) = || (pos ar, rot}5541) — SIMG (POSinit, T0tinit, @)||2-

where SIMj(pos,rot,d) represents the box position and
rotation after running a simulated trajectory with actions @
in the Pymunk simulator starting from box and rod positions
pos and rotations rot with simulator parameters set to fi.

We optimize the objective using CMA-ES, a gradient free



Hyperparameter Initial value Min Max  Optimization space p to sim. param p transform
Box mass 10  0.001 N/A p=10(n+ 1)
Box friction 0.5 0.0001 N/A p=0.5(p+1)
Moment of inertia 34520.83 10  N/A p = 35420.833(n + 1)
Center of gravity x 0 -42.5 425 p=42.5u
Center of gravity y 0 -90 90 p=90u

TABLE VII: Parameters optimized during system identification for the physics-based simulator baseline. Initial values
and scales are set such that when the parameters in the optimization space are i = 0, the actual values in the physics simulator
p are sensible defaults (see initial value column). Note for center of gravity, (0,0) refers to the geometric center of the object.

optimizer, using the implementation from https://github.com/
CyberAgentAlLab/cmaes. Parameters are initialized to have
the center of mass at the center of the object uniformly
distributed mass, and reasonable friction and mass defaults.
We use a population size of 8 based on the implementation-
suggested default of 4+ |3xlog(ndim) | and optimize for 100
generations.

Finally, we use the optimized set of parameters to perform
forward prediction. After forward prediction, we convert the
sequence of simulated 2D object positions into a sequence
of pointcloud predictions by estimating a rotation matrix and
translation (in 2D) and applying them to the 3D pointcloud
for the initially provided observation. The z values (height)
of all particles are assumed to be fixed at their initial values
throughout the prediction.

APPENDIX F
TRACKING MODULE DETAILS

As described in Section [[II-B| after sampling initial sets of
points for each object pj,;:, we formulate point tracking as
optimization for the points at each step p. Specifically, the
new points are computed as a 3D transformation of the points
output at the previous step, represented by a rigid rotation
R € R3, translation 7' € R3 and optional per-axis shearing
S € R3. The transform is a composition of rotation by R,
scaling by S, and translation by 7" in that order. We abuse
notation to sometimes use p’ for ease of reading, but p is a
function of the actual optimized parameters R, S,T. Thus the
optimization objective has the following loss terms:

1) Distance to surface.
1

1Pl

where depthinierp(p) 18 the depth estimation from inter-
polating information from multi-view depth observations,
and depthy,. () is the expected depth at each point when
projected into each camera frame.

Semantic alignment.

»Cdepth (ﬁ) = Z maX(O, depthinterp(p) _depthproj(if))

pEP

2)

1
‘Calign (ﬁ’) = 1T
Pl 2=
where dinov2(p) represents the multi-view interpolated
DinoV2 feature at the 3D point represented by p, and
again p;n;; 1 the position of the point in the first frame

(not necessarily immediately prior frame) of tracking.

Z min(||dinov2(pinit) —dinov2(p)||2, 30)

Hyperparameter Box pushing Dense packing
Optimizer Adam Adam
LR schedule Reduce on plateau  Reduce on plateau
Grad steps 200 200
Learning rate (T) 0.04 0.01
Learning rate (R) 0.04 0.1
Learning rate (S) 0.04 0.01
Use scale term No Yes
Wdepth 1 1
Walign 1 1
wl, le-3 3¢3
wlt, le-3 le2
Wieg N/A 3e3
Winask 100 15

TABLE VIII: Loss weights for the tracking module.

3) Motion regularization.

Lreg(R,T,S) = wk ||R||2 + wk

reg reg

1Tl + 1wy,

reg

15]]2-

Motion regularization prevents tracked points from ex-
hibiting high frequency jitter when the objects they are
tracking do not move.

Mask consistency. We introduce a mask consistency loss.
Intuitively, this loss tries to ensure that each pixel within
a 2D mask for an object from a particular camera view
should have a tracked point for that object that is close
to that pixel when projected into that view.

Let the set of all views be V' and the set of object masks
in a particular view v be M (v). Then the total number
of masks points N is N =3 v > opienr(w) 100
Concretely, this can be written as:

Emask(ﬁ) == % Z Z

veV objeM (v) piz€obj

4)

eﬁobj

where proj(p,v) is the 2D projection of 3D point p into
the image space of viewpoint v.
The overall objective is computed by weighting and combining
these terms:

ﬁt?‘acking = wdeptlLEdepth + walign£align+
+ wregﬂreg + wmaskﬂmask
The weights for each term as well as optimizer parameters
are enumerated in Table [VIII] The transformed points with the

best loss after the total number of gradient steps is complete
is output as the result.

min ||piz—proj(p, v)|


https://github.com/CyberAgentAILab/cmaes
https://github.com/CyberAgentAILab/cmaes

—> Box Orientation =% Pushing Direction

Fig. 11: Non-prehensile box pushing. We demonstrate our robot can push a box with unknown mass distribution from a
starting pose to a target pose. Note that our box pushing is non-prehensile because the in-hand object is not fixed. We show
that our method can generalize to unseen initial and target box poses in the first two rows and also previously unseen box
configurations in the third row. A green arrow indicates the box’s orientation, so boxes in rows 1 and 3 are flipped vertically.

Fig. 12: Dense packing with diverse object sets. In the Dense Packing task, we demonstrate that RoboPack effectively
identifies feasible insertion rows in a tray, minimizing excessive force on the robot to prevent hardware damage. The first row
presents a set of objects from data collection, while subsequent rows illustrate our method’s capability to adapt to objects with
various visual appearances and different levels of deformability.
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