,
Jari J. H. de Kroon
,
Michał Włodarczyk
Creative Commons Attribution 4.0 International license
The celebrated notion of important separators bounds the number of small (S,T)-separators in a graph which are "farthest from S" in a technical sense. In this paper, we introduce a generalization of this powerful algorithmic primitive, tailored to undirected graphs, that is phrased in terms of k-secluded vertex sets: sets with an open neighborhood of size at most k. In this terminology, the bound on important separators says that there are at most 4^k maximal k-secluded connected vertex sets C containing S but disjoint from T. We generalize this statement significantly: even when we demand that G[C] avoids a finite set ℱ of forbidden induced subgraphs, the number of such maximal subgraphs is 2^𝒪(k) and they can be enumerated efficiently. This enumeration algorithm allows us to make significant improvements for two problems from the literature. Our first application concerns the Connected k-Secluded ℱ-free subgraph problem, where ℱ is a finite set of forbidden induced subgraphs. Given a graph in which each vertex has a positive integer weight, the problem asks to find a maximum-weight connected k-secluded vertex set C ⊆ V(G) such that G[C] does not contain an induced subgraph isomorphic to any F ∈ ℱ. The parameterization by k is known to be solvable in triple-exponential time via the technique of recursive understanding, which we improve to single-exponential. Our second application concerns the deletion problem to scattered graph classes. A scattered graph class is defined by demanding that every connected component is contained in at least one of the prescribed graph classes Π_1, …, Π_d. The deletion problem to a scattered graph class is to find a vertex set of size at most k whose removal yields a graph from the class. We obtain a single-exponential algorithm whenever each class Π_i is characterized by a finite number of forbidden induced subgraphs. This generalizes and improves upon earlier results in the literature.
@InProceedings{jansen_et_al:LIPIcs.ISAAC.2023.42,
author = {Jansen, Bart M. P. and de Kroon, Jari J. H. and W{\l}odarczyk, Micha{\l}},
title = {{Single-Exponential FPT Algorithms for Enumerating Secluded ℱ-Free Subgraphs and Deleting to Scattered Graph Classes}},
booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)},
pages = {42:1--42:18},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-289-1},
ISSN = {1868-8969},
year = {2023},
volume = {283},
editor = {Iwata, Satoru and Kakimura, Naonori},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.42},
URN = {urn:nbn:de:0030-drops-193440},
doi = {10.4230/LIPIcs.ISAAC.2023.42},
annote = {Keywords: fixed-parameter tractability, important separators, secluded subgraphs}
}