Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 7 Mar 2023 (v1), last revised 4 Jun 2024 (this version, v2)]
Title:An Edge-based WiFi Fingerprinting Indoor Localization Using Convolutional Neural Network and Convolutional Auto-Encoder
View PDFAbstract:With the ongoing development of Indoor Location-Based Services, the location information of users in indoor environments has been a challenging issue in recent years. Due to the widespread use of WiFi networks, WiFi fingerprinting has become one of the most practical methods of locating mobile users. In addition to localization accuracy, some other critical factors such as latency, and users' privacy should be considered in indoor localization systems. In this study, we propose a light Convolutional Neural Network-based method for edge devices (e.g. smartphones) to overcome the above issues by eliminating the need for a cloud/server in the localization system. The proposed method is evaluated for three different open datasets, i.e., UJIIndoorLoc, Tampere and UTSIndoorLoc, as well as for our collected dataset named SBUK-D to verify its scalability. We also evaluate performance efficiency of our localization method on an Android smartphone to demonstrate its applicability to edge devices. For UJIIndoorLoc dataset, our model obtains approximately 99% building accuracy, over 90% floor accuracy, and 9.5 m positioning mean error with the model size and inference time of 0.5 MB and 51 us, respectively, which demonstrate high accuracy in range of state of the art works as well as amenability to the resource-constrained edge devices.
Submission history
From: Ebrahim Farahmand [view email][v1] Tue, 7 Mar 2023 07:30:57 UTC (719 KB)
[v2] Tue, 4 Jun 2024 16:06:57 UTC (5,352 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.