Computer Science > Machine Learning
[Submitted on 27 Jun 2024 (v1), last revised 23 May 2025 (this version, v3)]
Title:MissionGNN: Hierarchical Multimodal GNN-based Weakly Supervised Video Anomaly Recognition with Mission-Specific Knowledge Graph Generation
View PDF HTML (experimental)Abstract:In the context of escalating safety concerns across various domains, the tasks of Video Anomaly Detection (VAD) and Video Anomaly Recognition (VAR) have emerged as critically important for applications in intelligent surveillance, evidence investigation, violence alerting, etc. These tasks, aimed at identifying and classifying deviations from normal behavior in video data, face significant challenges due to the rarity of anomalies which leads to extremely imbalanced data and the impracticality of extensive frame-level data annotation for supervised learning. This paper introduces a novel hierarchical graph neural network (GNN) based model MissionGNN that addresses these challenges by leveraging a state-of-the-art large language model and a comprehensive knowledge graph for efficient weakly supervised learning in VAR. Our approach circumvents the limitations of previous methods by avoiding heavy gradient computations on large multimodal models and enabling fully frame-level training without fixed video segmentation. Utilizing automated, mission-specific knowledge graph generation, our model provides a practical and efficient solution for real-time video analysis without the constraints of previous segmentation-based or multimodal approaches. Experimental validation on benchmark datasets demonstrates our model's performance in VAD and VAR, highlighting its potential to redefine the landscape of anomaly detection and recognition in video surveillance systems. The code is available here: this https URL.
Submission history
From: Sanggeon Yun [view email][v1] Thu, 27 Jun 2024 01:09:07 UTC (440 KB)
[v2] Wed, 30 Oct 2024 18:08:20 UTC (433 KB)
[v3] Fri, 23 May 2025 20:21:37 UTC (1,964 KB)
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.