Skip to main content
Cornell University

In just 5 minutes help us improve arXiv:

Annual Global Survey
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > eess > arXiv:2503.10472

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Electrical Engineering and Systems Science > Signal Processing

arXiv:2503.10472 (eess)
[Submitted on 13 Mar 2025]

Title:Rotatable Antennas for Integrated Sensing and Communications

Authors:Chao Zhou, Changsheng You, Beixiong Zheng, Xiaodan Shao, Rui Zhang
View a PDF of the paper titled Rotatable Antennas for Integrated Sensing and Communications, by Chao Zhou and 4 other authors
View PDF HTML (experimental)
Abstract:In this letter, we propose to deploy rotatable antennas (RAs) at the base station (BS) to enhance both communication and sensing (C&S) performances, by exploiting a new spatial degree-of-freedom (DoF) offered by array rotation. Specifically, we formulate a multi-objective optimization problem to simultaneously maximize the sum-rate of multiple communication users and minimize the Cramér-Rao bound (CRB) for target angle estimation, by jointly optimizing the transmit beamforming vectors and the array rotation angle at the BS. To solve this problem, we first equivalently decompose it into two subproblems, corresponding to an inner problem for beamforming optimization and an outer problem for array rotation optimization. Although these two subproblems are non-convex, we obtain their high-quality solutions by applying the block coordinate descent (BCD) technique and one-dimensional exhaustive search, respectively. Moreover, we show that for the communication-only case, RAs provide an additional rotation gain to improve communication performance; while for the sensing-only case, the equivalent spatial aperture can be enlarged by RAs for achieving higher sensing accuracy. Finally, numerical results are presented to showcase the performance gains of RAs over fixed-rotation antennas in integrated sensing and communications (ISAC).
Comments: This work is submitted to IEEE for possible publication
Subjects: Signal Processing (eess.SP); Information Theory (cs.IT)
Cite as: arXiv:2503.10472 [eess.SP]
  (or arXiv:2503.10472v1 [eess.SP] for this version)
  https://doi.org/10.48550/arXiv.2503.10472
arXiv-issued DOI via DataCite

Submission history

From: Chao Zhou [view email]
[v1] Thu, 13 Mar 2025 15:44:35 UTC (354 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Rotatable Antennas for Integrated Sensing and Communications, by Chao Zhou and 4 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
view license
Current browse context:
eess.SP
< prev   |   next >
new | recent | 2025-03
Change to browse by:
cs
cs.IT
eess
math
math.IT

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status