close this message
arXiv smileybones

Happy Open Access Week from arXiv!

YOU make open access possible! Tell us why you support #openaccess and give to arXiv this week to help keep science open for all.

Donate!
Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2508.01983

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Cryptography and Security

arXiv:2508.01983 (cs)
[Submitted on 4 Aug 2025]

Title:Generative AI-Empowered Secure Communications in Space-Air-Ground Integrated Networks: A Survey and Tutorial

Authors:Chenbo Hu, Ruichen Zhang, Bo Li, Xu Jiang, Nan Zhao, Marco Di Renzo, Dusit Niyato, Arumugam Nallanathan, George K. Karagiannidis
View a PDF of the paper titled Generative AI-Empowered Secure Communications in Space-Air-Ground Integrated Networks: A Survey and Tutorial, by Chenbo Hu and 8 other authors
View PDF HTML (experimental)
Abstract:Space-air-ground integrated networks (SAGINs) face unprecedented security challenges due to their inherent characteristics, such as multidimensional heterogeneity and dynamic topologies. These characteristics fundamentally undermine conventional security methods and traditional artificial intelligence (AI)-driven solutions. Generative AI (GAI) is a transformative approach that can safeguard SAGIN security by synthesizing data, understanding semantics, and making autonomous decisions. This survey fills existing review gaps by examining GAI-empowered secure communications across SAGINs. First, we introduce secured SAGINs and highlight GAI's advantages over traditional AI for security defenses. Then, we explain how GAI mitigates failures of authenticity, breaches of confidentiality, tampering of integrity, and disruptions of availability across the physical, data link, and network layers of SAGINs. Three step-by-step tutorials discuss how to apply GAI to solve specific problems using concrete methods, emphasizing its generative paradigm beyond traditional AI. Finally, we outline open issues and future research directions, including lightweight deployment, adversarial robustness, and cross-domain governance, to provide major insights into GAI's role in shaping next-generation SAGIN security.
Comments: 30 pages, 14 figures, survey paper
Subjects: Cryptography and Security (cs.CR)
Cite as: arXiv:2508.01983 [cs.CR]
  (or arXiv:2508.01983v1 [cs.CR] for this version)
  https://doi.org/10.48550/arXiv.2508.01983
arXiv-issued DOI via DataCite

Submission history

From: Chenbo Hu [view email]
[v1] Mon, 4 Aug 2025 01:42:57 UTC (2,344 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Generative AI-Empowered Secure Communications in Space-Air-Ground Integrated Networks: A Survey and Tutorial, by Chenbo Hu and 8 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
cs.CR
< prev   |   next >
new | recent | 2025-08
Change to browse by:
cs

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status