Computer Science > Cryptography and Security
[Submitted on 4 Aug 2025]
Title:Generative AI-Empowered Secure Communications in Space-Air-Ground Integrated Networks: A Survey and Tutorial
View PDF HTML (experimental)Abstract:Space-air-ground integrated networks (SAGINs) face unprecedented security challenges due to their inherent characteristics, such as multidimensional heterogeneity and dynamic topologies. These characteristics fundamentally undermine conventional security methods and traditional artificial intelligence (AI)-driven solutions. Generative AI (GAI) is a transformative approach that can safeguard SAGIN security by synthesizing data, understanding semantics, and making autonomous decisions. This survey fills existing review gaps by examining GAI-empowered secure communications across SAGINs. First, we introduce secured SAGINs and highlight GAI's advantages over traditional AI for security defenses. Then, we explain how GAI mitigates failures of authenticity, breaches of confidentiality, tampering of integrity, and disruptions of availability across the physical, data link, and network layers of SAGINs. Three step-by-step tutorials discuss how to apply GAI to solve specific problems using concrete methods, emphasizing its generative paradigm beyond traditional AI. Finally, we outline open issues and future research directions, including lightweight deployment, adversarial robustness, and cross-domain governance, to provide major insights into GAI's role in shaping next-generation SAGIN security.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.