Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Aug 2025]
Title:VQ-DeepISC: Vector Quantized-Enabled Digital Semantic Communication with Channel Adaptive Image Transmission
View PDF HTML (experimental)Abstract:Discretization of semantic features enables interoperability between semantic and digital communication systems, showing significant potential for practical applications. The fundamental difficulty in digitizing semantic features stems from the need to preserve continuity and context in inherently analog representations during their compression into discrete symbols while ensuring robustness to channel degradation. In this paper, we propose a vector quantized (VQ)-enabled digital semantic communication system with channel adaptive image transmission, named VQ-DeepISC. Guided by deep joint source-channel coding (DJSCC), we first design a Swin Transformer backbone for hierarchical semantic feature extraction, followed by VQ modules projecting features into discrete latent spaces. Consequently, it enables efficient index-based transmission instead of raw feature transmission. To further optimize this process, we develop an attention mechanism-driven channel adaptation module to dynamically optimize index transmission. Secondly, to counteract codebook collapse during training process, we impose a distributional regularization by minimizing the Kullback-Leibler divergence (KLD) between codeword usage frequencies and a uniform prior. Meanwhile, exponential moving average (EMA) is employed to stabilize training and ensure balanced feature coverage during codebook updates. Finally, digital communication is implemented using quadrature phase shift keying (QPSK) modulation alongside orthogonal frequency division multiplexing (OFDM), adhering to the IEEE 802.11a standard. Experimental results demonstrate superior reconstruction fidelity of the proposed system over benchmark methods.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.