
In-memory Incremental Maintenance of Provenance
Sketches

Pengyuan Li
Illinois Institute of Technology

USA
pli26@hawk.iit.edu

Boris Glavic
University of Illinois Chicago

USA
bglavic@uic.edu

Dieter Gawlick
Oracle Corporation

USA
dieter.gawlick@oracle.com

Vasudha Krishnaswamy
Oracle Corporation

USA
vasudha.krishnaswamy@oracle.com

Zhen Hua Liu
Oracle Corporation

USA
zhen.liu@oracle.com

Danica Porobic
Oracle Corporation

USA
danica.porobic@oracle.com

Xing Niu
Oracle Corporation

USA
xing.niu@oracle.com

Abstract
Provenance-based data skipping [38] compactly over-approximates
the provenance of a query using so-called provenance sketches
and utilizes such sketches to speed-up the execution of subsequent
queries by skipping irrelevant data. However, a sketch captured
at some time in the past may become stale if the data has been
updated subsequently. Thus, there is a need to maintain prove-
nance sketches. In this work, we introduce In-Memory incremen-
tal Maintenance of Provenance sketches (IMP), a framework for
maintaining sketches incrementally under updates. At the core
of IMP is an incremental query engine for data annotated with
sketches that exploits the coarse-grained nature of sketches to
enable novel optimizations. We experimentally demonstrate that
IMP significantly reduces the cost of sketch maintenance, thereby
enabling the use of provenance sketches for a broad range of
workloads that involve updates.

Keywords
Provenance-based Data Skipping, Incremental Maintenance, Up-
dates, Provenance, Dynamic Relevance Analysis

1 Introduction
Database engines take advantage of physical design such as index
structures, zone maps [33] and partitioning to prune irrelevant data
as early as possible during query evaluation. In order to prune data,
database systems need to determine statically (at query compile
time) what data is needed to answer a query and which physi-
cal design artifacts to use to skip irrelevant data. For instance, to
answer a query with a WHERE clause condition A = 3 filtering the
rows of a table R, the optimizer may decide to use an index on A
to filter out rows that do not fulfill the condition. However, as was
demonstrated in [38], for important classes of queries like queries
involving top-k and aggregation with HAVING, it is not possible
to determine statically what data is needed, motivating the use
of dynamic relevance analysis techniques that determine during
query execution what data is relevant to answer a query. In [38]
we introduced such a dynamic relevance analysis technique called
provenance-based data skipping (PDBS). In PDBS, we encode

EDBT ’26, Tampere (Finland)
© 2025 Copyright held by the owner/author(s). Published on OpenProceedings.org
under ISBN 978-3-98318-102-5, series ISSN 2367-2005. Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.

what data is relevant for a query as a so-called provenance sketch.
Given a range-partition of a table accessed by a query, a prove-
nance sketch records which fragments of the partition contain
provenance. That is, provenance sketches compactly encode an
over-approximation of the provenance of a query. [38] presents
safety conditions that ensure a sketch is sufficient, i.e., evaluating
the query over the data represented by the sketch is guaranteed
to produce the same result as evaluating the query over the full
database. Thus, sketches are used to speed up queries by filtering
data not in the sketch.

EXAMPLE 1.1. Consider the database shown in Fig. 1 and
query 𝑄𝑇𝑜𝑝 that returns products whose total sale volume is
greater than $5000. The provenance of the single result tuple
(𝐴𝑝𝑝𝑙𝑒, 5074) are the two tuples (tuples 𝑠3 and 𝑠4 shown with pur-
ple background), as the group for Apple is the only group that
fulfills the HAVING clause. To create a provenance sketch for this
query, we select a range-partition of the sales table that option-
ally may correspond to the physical storage layout of this table.
For instance, we may choose to partition on attribute price
based on ranges 𝜙𝑝𝑟𝑖𝑐𝑒 :

{𝜌1 = [1, 600], 𝜌2 = [601, 1000], 𝜌3 = [1001, 1500], 𝜌4 = [1501, 10000] }

In Fig. 1, we show for each tuple the fragment 𝑓𝑖 it belongs to.
Here fragment 𝑓𝑖 corresponds to range 𝜌𝑖 . Two fragments (𝑓3 and
𝑓4 highlighted in red) contain provenance and, thus, the prove-
nance sketches for 𝑄𝑇𝑜𝑝 wrt. 𝐹sales,𝑝𝑟𝑖𝑐𝑒 is P = {𝜌3, 𝜌4}. Evaluat-
ing the query over the sketch’s data is guaranteed to produce the
same result as evaluation on the full database.1

As demonstrated in [38], provenance-based data skipping can
significantly improve query performance — we pay upfront for
creating sketches for some of the queries of a workload and then
amortize this cost by using sketches to answer future queries by
skipping irrelevant data. To create, or capture, a sketch for a query
𝑄 we execute an instrumented version of 𝑄 . Similarly, to use
a sketch for a query 𝑄 , this query is instrumented to filter out
data that does not belong to the sketch. For instance, consider
the sketch for 𝑄𝑇𝑜𝑝 from Ex. 1.1 containing two ranges 𝜌3 =

[1001, 1500] and 𝜌4 = [1501, 10000]. To skip irrelevant data, we
create a disjunction of conditions testing that each tuple passing

1In general, this is not the case for non-monotone queries. The safety check from
[38] can be used to test whether a particular partition for a table is safe for a query.
The partition used here fulfills this condition.

10.48786/edbt.2026.0556

https://OpenProceedings.org/
https://orcid.org/0009-0008-1440-6833
https://orcid.org/0000-0003-2887-2452
https://orcid.org/0000-0002-7882-0565
https://orcid.org/0009-0006-5691-1059
https://orcid.org/0009-0003-4943-1530
https://orcid.org/0000-0003-3006-9546
OpenProceedings.org
https://dx.doi.org/10.48786/edbt.2026.05

EDBT ’26, 24-27 March 2026, Tampere (Finland) Pengyuan Li et al.

𝑄𝑇𝑜𝑝

SELECT brand, SUM(price * numSold) AS rev
FROM sales
GROUP BY brand
HAVING SUM(price * numSold) > 5000

brand rev
Apple 5074

sales

sid brand productName price numSold
𝑠1 1 Lenovo ThinkPad T14s Gen 2 349 1 𝑓1
𝑠2 2 Lenovo ThinkPad T14s Gen 2 449 2 𝑓1
𝑠3 3 Apple MacBook Air 13-inch 1199 1 𝑓3
𝑠4 4 Apple MacBook Pro 14-inch 3875 1 𝑓4
𝑠5 5 Dell Dell XPS 13 Laptop 1345 1 𝑓3
𝑠6 6 HP HP ProBook 450 G9 999 4 𝑓2
𝑠7 7 HP HP ProBook 550 G9 899 1 𝑓2

Figure 1: Example query and relevant subsets of the database.

the WHERE clause belongs to the sketch, i.e., has a price within 𝜌3
or 𝜌4:2

WHERE (price BETWEEN 1001 AND 1500)
OR (price BETWEEN 1501 AND 10000)

PDBS enables databases to exploit physical design for new
classes of queries, significantly improving the performance of
aggregation queries with HAVING and top-k queries [38] and, more
generally, any query where only a fraction of the database is
relevant for answering the query. For instance, for a top-k query
only tuples contributing to a result tuple in the top-k are relevant,
but which tuples are in the top-k can only be determined at runtime.
Counterexamples include queries with selection conditions with
low selectivity for which the database can effectively filter the
data without PDBS.

However, just like materialized views, a sketch captured in
the past may no longer correctly reflect what data is needed (has
become stale) when the database is updated. The sketch then has
to be maintained to be valid for the current version of the database.

EXAMPLE 1.2 (STALE SKETCHES). Continuing with our run-
ning example, consider the effect of inserting a new tuple
𝑠8 = (8, HP, HP ProBook 650 G10, 1299, 1)

into relation sales. Running𝑄𝑇𝑜𝑝 over the updated table returns
a second result tuple (HP, 6194) as the total revenue for HP
is now above the threshold specified in the HAVING clause. For
the updated database, the three tuples for HP also belong to the
provenance. Thus, the sketch has become stale as it is missing the
range 𝜌2 which contains these tuples. Evaluating 𝑄𝑇𝑜𝑝 over the
outdated sketch leads to an incorrect result that misses the group
for HP.

Consider a partition 𝐹 of a table 𝑅 accessed by a query 𝑄 .
We use 𝑄𝑅,𝐹 to denote the capture query for 𝑄 and 𝐹 , generated
using the rewrite rules from [38]. Such a query propagates coarse-
grained provenance information and ultimately returns a sketch.
A straightforward approach to maintain sketches under updates
is full maintenance which means that we rerun the sketch’s cap-
ture query 𝑄𝑅,𝐹 to regenerate the sketch. Typically, 𝑄𝑅,𝐹 is more
expensive than 𝑄 . Thus, frequent execution of capture queries
is not feasible. Alternatively, we could employ incremental view
maintenance (IVM) techniques [23, 26] to maintain 𝑄𝑅,𝐹 . How-
ever, capture queries use specialized data types and functions to
efficiently implement common operations related to sketches. For

2Note that the conditions for adjacent ranges in a sketch can be merged. Thus, the ac-
tual instrumentation would be WHERE price BETWEEN 1001 AND 10000.

instance, we use bitvectors to encode sketches compactly and uti-
lize optimized (aggregate) functions and comparison operators for
this encoding. To give two concrete examples, a function imple-
menting binary search over the set of ranges for a sketch is used to
determine which fragment an input tuple belongs to and an aggre-
gation function that computes the bitwise-or of multiple bitvectors
is used to implement the union of a set of partial sketches. To
the best of our knowledge these operations are not supported by
state-of-the-art IVM frameworks. Furthermore, sketches are com-
pact over-approximations of the provenance of a query that are
sound: evaluating the query over the sketch yields the same result
as evaluating it over the full database. It is often possible to fur-
ther over-approximate the sketch, trading improved maintenance
performance for increased sketch size. Existing IVM methods do
not support such trade-offs as they have to ensure that incremental
maintenance yields the same result as full maintenance.

In this work, we study the problem of maintaining sketches
under updates such that a sketch created in the past can be updated
to be valid for the current state of the database. Towards this goal
we develop an incremental maintenance framework for sketches
that respects the approximate nature of sketches, has specialized
data structures for representing data annotated with sketches and
maintenance rules tailored for sketch-annotated data.

We start by introducing a data model where each row is associ-
ated with a sketch and then develop incremental maintenance rules
for operators over such annotated relations. We then present an
implementation of these rules in an in-memory incremental engine
called IMP (Incremental Maintenance of Provenance Sketches).
The input to this engine is a set of annotated delta tuples (tuples
that are inserted / deleted) that we extract from a backend DBMS.
To maintain a sketch created by a capture query 𝑄𝑅,𝐹 at some
point in the past, we extract the delta between the current version
of the database and the database instance at the original time of
capture (or the last time we maintained the sketch) and then feed
this delta as input to our incremental engine to compute a delta
for the sketch. IMP outsources some of the computation to the
backend database. This is in particular useful for operations like
joins where deltas from one side of the join have to be joined with
the full table on the other side similar to the delta rule Δ𝑅 ⊲⊳ 𝑆

used in standard incremental view maintenance. Additionally, we
present several optimizations of our approach: (i) filtering deltas
determined by the database to prune delta tuples that are guar-
anteed to not affect the result of incremental maintenance, (ii)
filtering deltas for joins using bloom filters and (iii) reducing the
size of the state for top-k operators. IMP is effective for any query
that benefits from sketches, e.g., queries with HAVING, as long as
the cost of maintaining sketches is amortized by using sketches
for answering queries.

In summary, we present IMP, the first incremental engine for
maintaining provenance sketches. Our main contributions are:

• We develop incremental versions of relational algebra operators
for sketch-annotated data.

• We implement these operators in IMP, an in-memory engine
for incremental sketch maintenance. IMP enables PDBS for
any DBMS by acting as a middleware between the user and the
database that manages and maintains sketches.

• We experimentally compare IMP against full maintenance and
against a baseline that does not use PDBS using TPC-H, real
world datasets and synthetic data. IMP outperforms full mainte-
nance, often by several orders of magnitude. PDBS with IMP

57

In-memory Incremental Maintenance of Provenance Sketches EDBT ’26, 24-27 March 2026, Tampere (Finland)

Figure 2: IMP manages a set of sketches. For each incoming query, IMP determines whether to (i) capture a new sketch, (ii) use an
existing non-stale sketch, or (iii) incrementally maintain a stale sketch and then utilize the updated sketch to answer the query.

significantly improves the performance of mixed workloads
including both queries and updates.

The remainder of this paper is organized as follows: Sec. 2
presents an overview of IMP. We discuss related work in Sec. 3.
We formally define incremental maintenance of sketches and intro-
duce our annotated data model in Sec. 4. In Sec. 5, we introduce
incremental sketch maintenance rules for relational operators and
prove their correctness in Sec. 5.4. We discuss IMP’s implemen-
tation in Sec. 6, present experiments in Sec. 7, and conclude in
Sec. 8.

2 Overview of IMP
Fig. 2 shows a overview of IMP that operates as a middleware
between the user and a DBMS. We highlight parts of the system
that utilize techniques from [38]. The dashed blue pipeline rewrites
queries to capture sketches while the dashed green pipeline rewrites
queries to use sketches. Users send SQL queries and updates to
IMP that are parsed using IMP’s parser and translated into an inter-
mediate representation (relational algebra with update operations).
The system stores a set of provenance sketches in the database. For
each sketch we store the sketch itself, the query it was captured
for, the current state of incremental operators for this query, and
the database version it was last maintained at or first captured
at for sketches that have not been maintained yet. As sketches
are small (100s of bytes), we treat sketches as immutable and
retain some or all past versions of a sketch. This has the advantage
that it avoids write conflicts (for updating the sketch) between
concurrent transactions that need to access different versions of
the sketch. We assume that the DBMS uses snapshot isolation and
we can use snapshot identifiers used by the database internally
to identify versions of sketches and of the database. For systems
that use other concurrency control mechanisms, IMP can maintain
version identifiers. Furthermore, the system can persist the state
that it maintains for its incremental operators in the database. This
enables the system to continue incremental maintenance from a
consistent state, e.g., when the database is restarted, or when we
are running out of memory and need to evict the operator states
for a query. IMP enables PDBS for workloads with updates on
top of any SQL databases.

IMP supports multiple incremental maintenance strategies. Un-
der eager maintenance, the system incrementally maintains each
sketch that may be affected by the update (based on which tables
are referenced by the sketch’s query) by processing the update,
retrieving the delta from the database, and running the incremen-
tal maintenance. Eager maintenance can be configured to batch
updates. If the operator states for a sketch’s query are not cur-
rently in memory, they will be fetched from the database. The
updates to the sketches determined by incremental maintenance

are then directly applied. Under lazy maintenance, the system
passes updates directly to the database. When a sketch is needed
to answer a query, this triggers maintenance for the sketch. For
that, IMP fetches the delta between the version of the database
at the time of the last maintenance for the sketch and the current
database state and incrementally maintains the sketch. The result
is a sketch that is valid as of the current state of the database.
More advanced strategies can be designed on top of these two
primitives, e.g., triggering eager maintenance during times of low
resource usage or eagerly maintaining sketches for queries with
strict response time requirements to avoid slowing down such
queries when maintenance is run for a large batch of updates.

For queries sent by the user, IMP first determines whether there
exists a sketch that can be used to answer the query 𝑄 . For that, it
applies the mechanism from [38] to determine whether a sketch
captured for a query 𝑄 ′ in the past can be safely used to answer
𝑄 . If such a sketch P exists, we determine whether P is stale. If
that is the case, then IMP incrementally maintains the sketch to
P′ (solid red pipeline). Afterwards, the query 𝑄 is instrumented
to filter input data based on sketch P′ and then the instrumented
query is sent to the database and its results are forwarded to the
user (the dashed green pipeline using techniques from [38]). If
no existing provenance sketch can be used to answer 𝑄 , then
IMP creates a capture query for 𝑄 and evaluates this query to
create a new sketch P (dashed blue pipeline [38]). This sketch
is then used to answer 𝑄 (dashed green pipeline [38]). IMP is
an in-memory engine, exploiting the fact that sketches are small
and that deltas and state required for incremental maintenance are
typically small enough to fit into main memory or can be split into
multiple batches if this is not that case.

3 Related Work
Provenance. Provenance can be captured by annotating data and
propagating these annotations using relational queries or by ex-
tending the database system [25, 39, 40]. Systems like GProM [7],
Perm [19], Smoke [42], Smoked Duck [34], Links [16], ProvSQL
[43] and DBNotes [8] capture provenance for SQL queries. In
[38], we introduced provenance-based data skipping (PBDS). The
approach captures sketches over-approximating the provenance of
a query and utilizes these sketches to speed-up subsequent queries.
We present the first approach for maintaining sketches under up-
dates, thus, enabling efficient PBDS for databases that are subject
to updates.
Incremental View Maintenance (IVM). View maintenance has
been studied extensively [9, 11, 17, 23, 27, 44]. [22, 45] gives an
overview of many techniques and applications of view mainte-
nance. Early work on view maintenance, e.g., [9, 11], used set se-
mantics. This was later expanded to bag semantics (e.g., [13, 20]).
We consider bag semantics. Materialization has been studied for

58

EDBT ’26, 24-27 March 2026, Tampere (Finland) Pengyuan Li et al.

𝐷 (Δ𝐷) a database (a delta database)
𝒟(Δ𝒟) an annotated database (an annotated delta database)
𝑅 (ℛ,Δℛ) a relation (an annotated relation, an annotated delta relation)
⟨𝑡, P⟩ an annotated tuple: a tuple 𝑡 associated with its provenance sketch P
𝜌 , 𝜙 , Φ a range, set of ranges for partitioning relation 𝑅 (database 𝐷)
S state of an incremental relational algebra operator
P a provenance sketch
I an incremental maintenance procedure
𝑄 a query

Figure 3: Glossary

Datalog as well [21, 23, 35]. Incremental maintenance algorithms
for iterative computations have been studied in [1, 10, 36, 37]. [26]
proposed higher-order IVM. [46] maintains aggregate views in
temporal databases. [41] proposes a general mechanism for aggre-
gation functions. [2, 48] studied automated tuning of materialized
views and indexes in databases. As mentioned before, existing
view maintenance techniques can not be directly applied for prove-
nance sketches maintenance, since [38] uses specialized data types
and functions to efficiently handle sketches during capture, which
are not supported in state-of-the-art IVM systems. Furthermore,
classical IVMs solutions have no notion of over-approximating
query results and, thus, can not trade sketch accuracy for per-
formance. Several strategies have been studied for maintaining
views eagerly and lazily. For instance, [14] presented algorithms
for deferred maintenance and [9, 12, 23] studied immediate view
maintenance. Our approach supports both cases: immediately
maintaining sketches after each update or sketches can be updated
lazily when needed.
Maintaining Provenance. [47] presents a system for maintenance
of provenance in a distributed Datalog engine. In contrast to our
work, [47] is concerned with efficient distributed computation
and storage for provenance. Provenance maintenance has to deal
with large provenance annotations that are generated by complex
queries involving joins and operations like aggregation that com-
pute a small number of result tuples based on a large number
of inputs. [47] addresses this problem by splitting the storage of
provenance annotations across intermediate query results requir-
ing recursive reconstruction at query time. In contrast, provenance
sketches are small and their size is determined upfront based
on the partitioning that is used. Because of this and because of
their coarse-grained nature, sketches enable new optimizations,
including trading accuracy for performance.

4 Background and Problem Definition
In this section we introduce necessary background and introduce
notation used in the following sections. Let U be a domain of
values. An instance 𝑅 of an n-ary relation schema SCH(𝑅) =

(𝑎1, . . . , 𝑎𝑛) is a function U𝑛 → N mapping tuples to their multi-
plicity. We use {|·|} to denote bags and 𝑡𝑛 ∈ 𝑅 to denote that tuple
𝑡 exists with multiplicity 𝑛 in relation 𝑅, i.e., 𝑅(𝑡) = 𝑛. A database
𝐷 is a set of relations 𝑅1 to 𝑅𝑚 . The schema of a database SCH(𝐷)
is the set of relation schemas SCH(𝑅𝑖) for 𝑖 ∈ [1,𝑚]. Fig. 4 shows
the bag semantics relational algebra used in this work. We use
SCH(𝑄) to denote the schema of the query 𝑄 and 𝑄 (𝐷) to denote
the result of evaluating query 𝑄 over database 𝐷 . Selection 𝜎𝜃 (𝑅)
returns all tuples from relation 𝑅 which satisfy the condition 𝜃 .
Projection Π𝐴 (𝑅) projects all input tuples on a list of projection
expressions. Here, 𝐴 denotes a list of expressions with potential
renaming (denoted by 𝑒 → 𝑎) and 𝑡 .𝐴 denotes applying these
expressions to a tuple 𝑡 . For example, 𝑎+𝑏 → 𝑐 denotes renaming
the result of 𝑎 + 𝑏 as 𝑐. 𝑅 × 𝑆 is the cross product for bags. For
convenience we also define join 𝑅 ⊲⊳𝜃 𝑆 and natural join 𝑅 ⊲⊳ 𝑆

𝜎𝜃 (𝑅) = {|𝑡𝑛 |𝑡𝑛 ∈ 𝑅 ∧ 𝑡 |= 𝜃 |} Π𝐴 (𝑅) = {|𝑡𝑛 |𝑛 =
∑︁
𝑢.𝐴=𝑡

𝑅(𝑢) |}

𝛿 (𝑅) = {|𝑡1 |𝑡 ∈ 𝑅 |} 𝑅 × 𝑆 = {|(𝑡 ◦ 𝑠)𝑛∗𝑚 |𝑡𝑛 ∈ 𝑅 ∧ 𝑠𝑚 ∈ 𝑆 |}
𝛾𝑓 (𝑎) ;𝐺 (𝑅) = {|(𝑡 .𝐺, 𝑓 (𝐺𝑡))1 |𝑡 ∈ 𝑅 |}

𝐺𝑡 = {(𝑡1 .𝑎)𝑛 |𝑡1𝑛 ∈ 𝑅 ∧ 𝑡1 .𝐺 = 𝑡 .𝐺}
𝜏𝑘,𝑂 (𝑅) = {|𝑡𝑚 | pos(𝑡, 𝑅,𝑂) < 𝑘

∧𝑚 =𝑚𝑖𝑛(𝑅(𝑡), 𝑘 − pos(𝑡, 𝑅,𝑂)) |}

Figure 4: Bag Relational Algebra

in the usual way. Aggregation 𝛾𝑓 (𝑎) ;𝐺 (𝑅) groups tuples accord-
ing to their values in attributes 𝐺 and computes the aggregation
function 𝑓 over the bag of values of attribute 𝑎 for each group.
We also allow the attribute storing 𝑓 (𝑎) to be named explicitly,
e.g., 𝛾𝑓 (𝑎)→𝑥 ;𝐺 (𝑅), renames 𝑓 (𝑎) as 𝑥 . Duplicate removal 𝛿 (𝑅)
removes duplicates (definable using aggregation). The top-k op-
erator 𝜏𝑘,𝑂 (𝑅) returns the first 𝑘 tuples from the relation 𝑅 sorted
on order-by attributes 𝑂 . We use <𝑂 to denote the order induced
by 𝑂 . The position of a tuple in 𝑅 ordered on 𝑂 is denoted by
pos(𝑡, 𝑅,𝑂) and defined as: pos(𝑡, 𝑅,𝑂) =

∑
𝑡 ′<𝑂 𝑡 𝑅(𝑡 ′). Fig. 3

shows an overview of the notations used in this work.

4.1 Range-based Provenance Sketches
We use provenance sketches to concisely represent a superset of
the provenance of a query (a sufficient subset of the input) based
on horizontal partitions of the input relations of the query.

4.1.1 Range Partitioning. Given a set of intervals over the
domains of a set of partition attributes 𝐴 ⊂ SCH(𝑅), range parti-
tioning determines membership of tuples to fragments based on
their 𝐴 values. For simplicity, we define partitioning for a single
attribute 𝑎, but all of our techniques also apply when |𝐴| > 1.

DEFINITION 4.1 (RANGE PARTITION). Consider a relation
𝑅 and 𝑎 ∈ SCH(𝑅). Let D(𝑎) denote the domain of 𝑎 and 𝜙 =

{𝜌1, . . . , 𝜌𝑛} be a set of intervals [𝑙, 𝑢] ⊆ D(𝑎) such that
⋃𝑛

𝑖=0 𝜌𝑖 =

D(𝑎) and 𝜌𝑖 ∩ 𝜌 𝑗 = ∅ for 𝑖 ≠ 𝑗 . The range-partition of 𝑅 on 𝑎
according to 𝜙 denoted as 𝐹𝜙,𝑎 (𝑅) is defined as:

𝐹𝜙,𝑎 (𝑅) = {𝑅𝜌1 , . . . , 𝑅𝜌𝑛 } where 𝑅𝜌 = {|𝑡𝑛 | 𝑡𝑛 ∈ 𝑅 ∧ 𝑡 .𝑎 ∈ 𝜌 |}

We will use 𝐹 instead of 𝐹𝜙,𝑎 if 𝜙 and 𝑎 are clear from the con-
text and 𝑓 , 𝑓 ′, 𝑓𝑖 , etc. to denote fragments. We also extend range
partitioning to databases. For a database 𝐷 = {𝑅1, . . . , 𝑅𝑛}, we use
Φ to denote a set of range - attribute pairs {(𝜙1, 𝑎1), . . . , (𝜙𝑛, 𝑎𝑛)}
such that 𝐹𝜙𝑖 ,𝑎𝑖 is a partition for 𝑅𝑖 . Relations 𝑅𝑖 that do not have
a sketch can be modeled by setting

𝜌𝑖 = {[𝑚𝑖𝑛(D(𝑎𝑖)),max(D(𝑎𝑖))]}
,a single range covering all domain values.

4.1.2 Provenance Sketches. Consider a database 𝐷 , query𝑄 ,
and a range partition of 𝐷 using ranges Φ. We use 𝑃 (𝑄, 𝐷) ⊆ 𝐷 to
denote the provenance of 𝑄 wrt. 𝐷 . For the purpose of PDBS, any
provenance model that represents the provenance of 𝑄 as a subset
of 𝐷 can be used as long as the model guarantees sufficiency3 [18]:
𝑄 (𝑃 (𝑄,𝐷)) =𝑄 (𝐷). A provenance sketch P for𝑄 according to Φ
is a subset of the ranges 𝜙𝑖 for each 𝜙𝑖 ∈ Φ such that the fragments
corresponding to the ranges in P fully cover 𝑄’s provenance
within each 𝑅𝑖 in 𝐷, i.e.,𝑃 (𝑄, 𝐷) ∩ 𝑅𝑖 . We will write 𝜌 ∈ Φ to

3Note that our notion of sufficiency aligns with the one from [24] which differs
slightly from the one used in [18] that is defined for a single result tuple of 𝑄 .

59

In-memory Incremental Maintenance of Provenance Sketches EDBT ’26, 24-27 March 2026, Tampere (Finland)

denote that 𝜌 ∈ 𝜙𝑖 for some 𝜙𝑖 ∈ Φ and 𝐷𝜌 for 𝜌 from 𝜙𝑖 to
denote the subsets of the database where all relations are empty
except for 𝑅𝑖 which is set to 𝑅𝑖,𝜌 , the fragment for 𝜌. We use
PΦ (𝐷,Φ, 𝑄) ⊆ Φ to denote the set of ranges whose fragments
overlap with the provenance 𝑃 (𝑄, 𝐷):

PΦ (𝐷,Φ, 𝑄) = {𝜌 | 𝜌 ∈ 𝜙𝑖 ∧ ∃𝑡 ∈ 𝑃 (𝑄,𝐷) : 𝑡 ∈ 𝑅𝑖,𝜌 }

DEFINITION 4.2 (PROVENANCE SKETCH). Let 𝑄 be a query,
𝐷 a database, 𝑅 a relation accessed by 𝑄 , and Φ a partition of 𝐷 .
We call a subset P of Φ a provenance sketch iff P ⊇ PΦ (𝐷,Φ, 𝑄).
A sketch is accurate if P = PΦ (𝐷,Φ, 𝑄). The instance 𝐷P of P is
defined as 𝐷P =

⋃
𝜌∈P 𝐷𝜌 . A sketch is safe if 𝑄 (𝐷P) =𝑄 (𝐷).

Consider the database consisting of a single relation (sales)
from our running example shown in Fig. 1. According to the
partition Φ = {(𝜙𝑝𝑟𝑖𝑐𝑒 , 𝑝𝑟𝑖𝑐𝑒)}, the accurate provenance sketch P
for the query 𝑄𝑇𝑜𝑝 according to Φ consists of the set of ranges
{𝜌3, 𝜌4} (the two tuples in the provenance of this query highlighted
in Fig. 1 belong to the fragments 𝑓3 and 𝑓4 corresponding to these
ranges). The instance 𝐷P , i.e., the data covered by the sketch,
consists of all tuples contained in fragments 𝑓3 and 𝑓4 which are:
{𝑠3, 𝑠4, 𝑠5}. This sketch is safe. We use the method from [38] to
determine for an attribute 𝑎 and query 𝑄 whether a sketch build
on any partition of 𝑅 on 𝑎 will be safe.

4.2 Updates, Histories, and Deltas
For the purpose of incremental maintenance we are interested
in the difference between database states. Given two databases
𝐷1 and 𝐷2 we define the delta between 𝐷1 and 𝐷2 to be the
symmetric difference between 𝐷1 and 𝐷2 where tuples 𝑡 that have
to be inserted into 𝐷1 to generate 𝐷2 are tagged as Δ+ 𝑡 and tuples
that have to be deleted to derive 𝐷2 from 𝐷1 are tagged as Δ- 𝑡 :

Δ(𝐷1, 𝐷2) = {|Δ- 𝑡 | 𝑡 ∈ 𝐷1 − 𝐷2 |} ∪ {|Δ+ 𝑡 | 𝑡 ∈ 𝐷2 − 𝐷1 |}

For a given delta Δ𝐷 , we use Δ-𝐷 (Δ+𝐷) to denote {|Δ- 𝑡 |Δ- 𝑡 ∈ Δ𝐷 |}
({|Δ+ 𝑡 |Δ+ 𝑡 ∈ Δ𝐷 |}). We use 𝐷 ∪• Δ𝐷 to denote applying delta Δ𝐷 to
database 𝐷:

𝐷 ∪• Δ𝐷 = 𝐷 − {|Δ- 𝑡 | Δ- 𝑡 ∈ Δ𝐷 |} ∪ {|Δ+ 𝑡 | Δ+ 𝑡 ∈ Δ𝐷 |}

EXAMPLE 4.1. Reconsider the insertion of tuple 𝑠8 (also shown
below) into sales as shown in Ex. 1.2.

𝑠8 = (8, HP, HP ProBook 650 G10, 1299, 1)

We get: Δ𝐷 = {|Δ+ 𝑠8 |}

We use the same delta notation for sketches, e.g., for two sketch
versions P1 and P2, ΔP is their delta if P2 = P1 ∪• ΔP, where ∪•
on sketches is defined as expected by inserting Δ+ P and deleting
Δ- P.

4.3 Sketch-Annotated Databases And Deltas
Our incremental maintenance approach utilizes relations whose
tuples are annotated with sketches. We define an incremental
semantics for maintaining the results of operators over such an-
notated relations and demonstrate that this semantics correctly
maintains sketches.

DEFINITION 4.3 (SKETCH ANNOTATED RELATION). A sketch
annotated relation ℛ of arity𝑚 for a given set of ranges 𝜙 over
the domain of some attribute 𝑎 ∈ SCH(𝑅), is a bag of pairs ⟨𝑡,P⟩
such that 𝑡 is an𝑚-ary tuple and P ⊆ 𝜙 .

We next define an operator annotate(𝑅,Φ) that annotates each
tuple with the singleton set containing the range its value in at-
tribute 𝑎 belongs to. This operator will be used to generate inputs
for incremental relational algebra operators over annotated rela-
tions.

DEFINITION 4.4 (ANNOTATING RELATIONS). Given a rela-
tion 𝑅, attribute 𝑎 ∈ SCH(𝑅) and ranges Φ = {. . . , (𝜙, 𝑎), . . .}, i.e.,
(𝜙, 𝑎) is the partition for 𝑅 in Φ, the operator annotate returns a
sketch-annotated relation ℛ with the same schema as 𝑅:

annotate(𝑅,Φ) = {|⟨𝑡, {𝜌}⟩ | 𝑡 ∈ 𝑅 ∧ 𝑡 .𝑎 ∈ 𝜌 ∧ 𝜌 ∈ 𝜙 |}

We define annotated deltas as deltas where each tuple is anno-
tated using the annotate operator. Consider a delta Δ𝑅 between
two versions 𝑅1 and 𝑅2 of relation 𝑅. Given ranges 𝜙 for attribute
𝑎 ∈ SCH(𝑅), we define Δℛ as: Δℛ = annotate(Δ𝑅,Φ). Δℛ
contains all tuples from 𝑅 that differ between 𝑅1 and 𝑅2 tagged
with Δ+ or Δ- depending on whether they got inserted or deleted.
Each tuple 𝑡 is annotated with the range 𝜌 ∈ 𝜙 that 𝑡 .𝑎 belongs to.
Analog we use 𝒟 to denote the annotated version of database 𝐷
and use Δ𝒟 to denote the annotated version of delta database Δ𝐷 .

EXAMPLE 4.2. Continuing with Ex. 4.1, the annotated version
of Δ𝐷2 according to 𝜙𝑝𝑟𝑖𝑐𝑒 is {|⟨Δ+ 𝑠8, {𝜌3}⟩|}, because 𝑠8 .𝑝𝑟𝑖𝑐𝑒
belongs to 𝜌3 = [1001, 1500] ∈ 𝜙𝑝𝑟𝑖𝑐𝑒 .

4.4 Problem Definition
We are now ready to define incremental maintenance procedures
(IMs) that maintain provenance sketches. An IM takes as input a
query 𝑄 and an annotated delta Δ𝒟 for the ranges Φ of a prove-
nance sketch P and produces a delta ΔP for the sketch. Note that
we assume that all attributes used in Φ are safe. An attribute 𝑎 is
safe for a query 𝑄 if every sketch based on some range partition
on 𝑎 is safe. We use the safety test from [38] to determine safe
attributes. IMs are allowed to store some state S, e.g., information
about groups produced by an aggregation operator, to allow for
more efficient maintenance. Given the current state and Δ𝒟, the
IM should return a delta ΔP for the sketch P and an updated state
S′ such that P ∪• ΔP over-approximates an accurate sketch for
the updated database.

DEFINITION 4.5 (INCREMENTAL MAINTENANCE PROCE-
DURE). Given a query 𝑄 , a database 𝐷 and a delta Δ𝐷. Let P
be a provenance sketch over 𝐷 for 𝑄 wrt. some partition Φ. An
incremental maintenance procedure I takes as input a state S,
the annotated delta Δ𝒟, and returns an updated state S′ and a
provenance sketch delta ΔP:

I(𝑄,Φ,S,Δ𝒟) = (ΔP,S′)

Let P[𝑄,Φ, 𝐷] denote an accurate sketch for 𝑄 over 𝐷 wrt.
Φ. Niu et al. [38] demonstrated that any over-approximation of a
safe sketch is also safe, i.e., evaluating the query over the over-
approximated sketch yields the same result as evaluating the query
over the full database. Thus, for a IM I to be correct, the following
condition has to hold: for every sketch P that is valid for 𝐷 and
delta Δ𝐷 , I, if provided with the state S for 𝐷 and the annotated
version Δ𝒟 of Δ𝐷 , returns an over-approximation of the accurate
sketch P[𝑄,Φ, 𝐷 ∪• Δ𝐷]:

P[𝑄,Φ, 𝐷 ∪• Δ𝐷] ⊆ P ∪• I(𝑄,Φ,S,Δ𝒟)

5 Incremental Annotated Semantics
We now introduce an IM that maintains sketches using annotated
and incremental semantics for relational algebra operators. Each

60

EDBT ’26, 24-27 March 2026, Tampere (Finland) Pengyuan Li et al.

operator takes as input an annotated delta produced by its inputs
(or passed to the IM in case of the table access operator), updates
its internal state, and outputs an annotated delta. Together, the
states of all such incremental operators in a query make up the state
of our IM. For an operator 𝑂 (or query 𝑄) we use I(𝑂,Φ,Δ𝒟,S)
(I(𝑄,Φ,Δ𝒟,S)) to denote the result of evaluating𝑂 (𝑄) over the
annotated delta Δ𝒟 using the state S. We will often drop S and
Φ. Our IM evaluates a query 𝑄 expressed in relational algebra
producing an updated state and outputting a delta where each row
is annotated with a partial sketch delta. These partial sketch deltas
are then combined into a final result ΔP.

EXAMPLE 5.1. Fig. 5 shows annotated tables ℛ and𝒮, ranges
𝜙𝑎 and 𝜙𝑐 for attribute 𝑎 (table 𝑅) and 𝑐 (table 𝑆), the delta Δ𝑅
and the sketches before the delta has been applied: P𝑅 and P𝑆 .
Consider the following query over 𝑅 and 𝑆:

SELECT a, sum(c) as sc
FROM (SELECT a, b FROM R WHERE a > 3) JOIN S on (b = d)
GROUP BY a HAVING SUM(c) > 5

Fig. 5 (right table) shows each operator’s output. We will further
discuss these in the following when introducing the incremental
semantics for individual operators. In this example, a new tuple
is inserted into 𝑅 resulting in sketch deltas ΔP𝑅 =Δ+ {𝑓1} and
ΔP𝑆 =Δ+ {𝑔2}. The tuple inserted into 𝑅 results in the generation
of a new group for the aggregation subquery which passes the
HAVING condition and in turn causes the two fragments from the
tuple belonging to this group to be added to the sketches.

5.1 Merging Sketch Deltas
Each incremental algebra operator returns an annotated relation
where each tuple is associated with a sketch that is sufficient to
produce it. To generate the sketch for a query 𝑄 we evaluate the
query under our incremental annotated semantics to produce the
tuples of𝑄 (𝐷) each annotated with a partial sketch. We then com-
bine these partial sketches into a sketch for𝑄 . We now discuss the
operator 𝜇 that implements this final merging step. To determine
whether a change to the annotated query result will result in a
change to the current sketch, this operator maintains as state a
map S : Φ → N that records for each range 𝜌 ∈ Φ the number
of result tuples for which 𝜌 is in their sketch. If the counter for
a fragment 𝜌 reaches 0 (due to the deletion of tuples), then the
fragment needs to be removed from the sketch. If the counter for a
fragment 𝜌 changes from 0 to a non-zero value, then the fragment
now belongs to the sketch for the query (we have to add a delta
inserting this fragment to the sketch).

I(𝜇 (𝑄),Δ𝒟,S) = (ΔP,S′)

We first explain how S′, the updated state for the operator,
is computed and then explain how to compute ΔP using S. We
define S′ pointwise for a fragment 𝜌 . Any newly inserted (deleted)
tuple whose sketch includes 𝜌 increases (decreases) the count for
𝜌. That is the total cardinality of such inserted tuples (of bag
Δ+ 𝒟 and Δ- 𝒟, respectively) has to be added (subtracted) from
the current count for 𝜌. Depending on the change of the count
for 𝜌 between S and S′, the operator 𝜇 has to output a delta for
P. Specifically, if S[𝜌] = 0 ≠ S′ [𝜌] then the fragment has to
be inserted into the sketch and if S[𝜌] ≠ 0 = S′ [𝜌] then the
fragment was part of the sketch, but no longer contributes and
needs to be removed.

S′ [𝜌] = S[𝜌] + |Δ+ 𝒟𝜌 | − |Δ- 𝒟𝜌 |
Δ+ 𝒟𝜌 = {|Δ+ ⟨𝑡,P⟩𝑛 | Δ+ ⟨𝑡,P⟩𝑛 ∈ I(𝑄,Δ𝒟) ∧ 𝜌 ∈ P|}
Δ- 𝒟𝜌 = {|Δ- ⟨𝑡,P⟩𝑛 | Δ- ⟨𝑡,P⟩𝑛 ∈ I(𝑄,Δ𝒟) ∧ 𝜌 ∈ P|}

ΔP =
⋃

𝜌 : S[𝜌]=0∧S′ [𝜌]≠0
{Δ+ 𝜌} ∪

⋃
𝜌 : S[𝜌]≠0∧S′ [𝜌]=0

{Δ- 𝜌}

EXAMPLE 5.2. Reconsider our running example from Ex. 1.1
that partitions based on 𝜙𝑝𝑟𝑖𝑐𝑒 . Assume that there are two result
tuples 𝑡1 and 𝑡2 of a query 𝑄 that have 𝜌2 = [601, 1000] in their
sketch and one result tuple 𝑡3 that has 𝜌1 and 𝜌2 in its sketch. Then
the current sketch for the query is P = {𝜌1, 𝜌2} and the state of
𝜇 is as shown below. If we are processing a delta Δ- ⟨𝑡3, {𝜌1, 𝜌2}⟩
deleting tuple 𝑡3, the updated counts S′ are:

S[𝜌1] = 1 S[𝜌2] = 3 S′ [𝜌1] = 0 S′ [𝜌2] = 2
As there is no longer any justification for 𝜌1 to belong to the sketch
(its count changed to 0), 𝜇 returns a delta: {Δ- 𝜌1}

Consider the merge operator 𝜇 in Ex. 5.1. The state data before
maintenance contains ranges 𝑓2 and 𝑔1. A single tuple annotated
with 𝑓1 and 𝑔2 is added to the input of this operator. Both ranges
were not present in S and, thus, in addition adding them to S′ the
merge operator returns a sketch delta Δ+ {𝑓1, 𝑔2}.

5.2 Incremental Relational Algebra
5.2.1 Table Access Operator. The incremental version of
the table access operator 𝑅 returns the annotated delta Δℛ for 𝑅
passed as part of Δ𝒟 to the IM unmodified. This operator has no
state.

I(𝑅,Δ𝒟) = Δℛ

Fig. 5 (top) shows the result of annotating relation Δ𝑅 from
Ex. 5.1.

5.2.2 Projection. The projection operator does not maintain
any state as each output tuple is produced independently from an
input tuple if we consider multiple duplicates of the same tuple as
separate tuples. For each annotated delta tuple Δ⟨𝑡,P⟩, we project
𝑡 on the project expressions 𝐴 and propagate P unmodified as 𝑡 .𝐴
in the result depends on the same input tuples as 𝑡 .

I(Π𝐴 (𝑄),Δ𝒟) = {|Δ⟨𝑡 .𝐴,P⟩𝑛 | Δ⟨𝑡,P⟩𝑛 ∈ I(𝑄,Δ𝒟) |}

5.2.3 Selection. The incremental selection operator is stateless
and the sketch of an input tuple is sufficient for producing the same
tuple in the output of selection. Thus, selection returns all input
delta tuples that fulfill the selection condition unmodified and
filters out all other delta tuples. In our running example (Fig. 5),
the single input delta tuple fulfills the condition of selection 𝜎𝑎>3.

I(𝜎𝜃 (𝑄),Δ𝒟) = {|Δ⟨𝑡,P⟩𝑛 | Δ⟨𝑡,P⟩𝑛 ∈ I(𝑄,Δ𝒟) ∧ 𝑡 |= 𝜃 |}

5.2.4 Cross Product. The incremental version of a cross prod-
uct (and join) 𝑄1 × 𝑄2 combines three sets of deltas: (i) joining
the delta of 𝑄1 with the current annotated state of 𝑄2 (𝑄2 (𝒟)),
(ii) joining the delta of the 𝑄2 with 𝑄1 (𝒟), (iii) joining the deltas
of 𝑄1 and 𝑄2. For (iii) there are four possible cases depending
on which of the two delta tuples being joined is an insertion or a
deletion. For two inserted tuples that join, the joined tuple 𝑠 ◦ 𝑡
is inserted into the result of the cross product. For two deleted
tuples, we also have to insert the joined tuple 𝑠 ◦ 𝑡 into the result.
For a deleted tuple joining an inserted tuple, we should delete the
tuple 𝑠 ◦ 𝑡 . The non-annotated version of these rules have been
discussed in [14, 20, 26, 32]. We use Δ𝑄𝑖 to denote I(𝑄𝑖 ,Δ𝒟)
for 𝑖 ∈ {1, 2} below.

61

In-memory Incremental Maintenance of Provenance Sketches EDBT ’26, 24-27 March 2026, Tampere (Finland)

Table, Ranges and Delta

𝑎 𝑏 P

ℛ
1 7 {𝑓1}
9 9 {𝑓2}

𝑐 𝑑 P

𝒮
6 9 {𝑔1}
7 8 {𝑔2}

𝜙𝑎 = {𝑓1 = [1, 5], 𝑓2 = [6, 10]}
𝜙𝑐 = {𝑔1 = [1, 6], 𝑔2 = [7, 15]}

P𝑅 = {𝑓2} P𝑆 = {𝑔1}

Δ𝑅 = {|Δ+ (5, 8) |}

Output for each incremental operator
Table access 𝑅 {|Δ+ ⟨(5, 8), {𝑓1}⟩|}
Selection 𝜎𝑎>3 {|Δ+ ⟨(5, 8), {𝑓1}⟩|}

Join ⊲⊳𝑏=𝑑 {|Δ+ ⟨(5, 8, 7, 8), {𝑓1, 𝑔2}⟩|}

Aggregation 𝛾sum(𝑐) ;𝑎

S[9] = (SUM = 6, CNT = 1,P = {𝑓2, 𝑔1},ℱ9 = {𝑓2 : 1, 𝑔1 : 1})
S′ [9] = (SUM = 6, CNT = 1,P = {𝑓2, 𝑔1},ℱ9 = {𝑓2 : 1, 𝑔1 : 1})
S′ [5] = (SUM = 7, CNT = 1,P = {𝑓1, 𝑔2},ℱ5 = {𝑓1 : 1, 𝑔2 : 1})

{|Δ+ ⟨(5, 7), {𝑓1, 𝑔2}⟩|}
Having 𝜎sum(𝑐)>5 {|Δ+ ⟨(5, 7), {𝑓1, 𝑔2}⟩|}

Merging 𝜇
S : {𝑓2 : 1, 𝑔1 : 1}

S′ : {𝑓1 : 1, 𝑓2 : 1, 𝑔1 : 1, 𝑔2 : 1}
Sketch delta Δ+ {𝑓1, 𝑔2}

Figure 5: Using our IM to evaluate a query under incremental annotated semantics.

I(𝑄1 ×𝑄2,Δ𝒟) =
{|Δ+ ⟨𝑠 ◦ 𝑡,P1 ∪• P2⟩𝑛·𝑚 | (Δ+ ⟨𝑠,P1⟩𝑛 ∈ Δ𝑄1 ∧ Δ+ ⟨𝑡,P2⟩𝑚 ∈ Δ𝑄2)

∨ (Δ- ⟨𝑠,P1⟩𝑛 ∈ Δ𝑄1 ∧ Δ- ⟨𝑡,P2⟩𝑚 ∈ Δ𝑄2)
∨ (Δ+ ⟨𝑠,P1⟩𝑛 ∈ Δ𝑄1 ∧ ⟨𝑡,P2⟩𝑚 ∈ 𝑄2 (𝒟))
∨ (⟨𝑠,P1⟩𝑛 ∈ 𝑄1 (𝒟) ∧ Δ+ ⟨𝑡,P2⟩𝑚 ∈ Δ𝑄2) |}

∪
{|Δ- ⟨𝑠 ◦ 𝑡,P1 ∪• P2⟩𝑛·𝑚 | (Δ- ⟨𝑠,P1⟩𝑛 ∈ Δ𝑄1 ∧ Δ+ ⟨𝑡,P2⟩𝑚 ∈ Δ𝑄2)

∨ (Δ+ ⟨𝑠,P1⟩𝑛 ∈ Δ𝑄1 ∧ Δ- ⟨𝑡,P2⟩𝑚 ∈ Δ𝑄2)
∨ (Δ- ⟨𝑠,P1⟩𝑛 ∈ Δ𝑄1 ∧ ⟨𝑡,P2⟩𝑚 ∈ 𝑄2 (𝒟))
∨ (⟨𝑠,P1⟩𝑛 ∈ 𝑄1 (𝒟) ∧ Δ- ⟨𝑡,P2⟩𝑚 ∈ Δ𝑄2) |}

Continuing with Ex. 5.1, as Δ𝒮 = ∅ and Δℛ = {|Δ+ ⟨(5, 8), {𝑓1}⟩|}
only contains insertions, only Δℛ ⊲⊳𝑏=𝑑 𝒮 returns a non-empty
result (the third case above). As (5, 8) only joins with tuple (7, 8),
a single delta tuple Δ+ ⟨(5, 8, 7, 8), {𝑓1, 𝑔2}⟩ is returned.

5.2.5 Aggregation: Sum, Count, and Average. For the ag-
gregation operator, we need to maintain the current aggregation
result for each individual group and record the contribution of frag-
ments from a provenance sketch towards the aggregation result to
be able to efficiently maintain the operator’s result. Consider an
aggregation operator 𝛾f (𝑎) ;𝐺 (𝑅) where f is an aggregation function
and 𝐺 are the group by attributes (𝐺 = ∅ for aggregation without
group-by). Given a version 𝑅 of the input of the aggregation opera-
tor, we use G = {𝑡 .𝐺 |𝑡 ∈ 𝑅} to denote the set of distinct group-by
values.

The state data needed for aggregation depends on what aggre-
gation function we have to maintain. However, for all aggregation
functions the state maintained for aggregation is a map S from
groups to a per-group state storing aggregation function results
for this group, the sketch for the group, and a map ℱ𝑔 recording
for each range 𝜌 of Φ the number of input tuples belonging to the
group with 𝜌 in their provenance sketch. Intuitively, ℱ𝑔 is used in
a similar fashion as for operator 𝜇 to determine when a range has
to be added to or removed from a sketch for the group. We will
discuss aggregation functions sum, count, and avg that share the
same state.

Sum. Consider an aggregation 𝛾sum(𝑎) ;𝐺 (𝑄). To be able to incre-
mentally maintain the aggregation result and provenance sketch
for a group 𝑔, we store the following state:

S[𝑔] = (SUM, CNT,P,ℱ𝑔)

SUM and CNT store the sum and count for the group, P stores
the group’s sketch, and ℱ𝑔 : Φ → N introduced above tracks for
each range 𝜌 ∈ Φ how many input tuples from 𝑄 (𝐷) belonging to
the group have 𝜌 in their sketch. State S is initialized to ∅.
Incremental Maintenance. The operator processes an annotated
delta as explained in the following. Consider an annotated delta
Δ𝒟. Let Δ𝑄 denote I(𝑄,Δ𝒟), i.e., the delta produced by incre-
mental evaluation for 𝑄 using Δ𝒟. We use GΔ𝑄 to denote the
set of groups present in Δ𝑄 and Δ𝑄𝑔 to denote the subset of Δ𝑄
including all annotated delta tuples Δ⟨𝑡,P⟩ where 𝑡 .𝐺 = 𝑔. We
now explain how to produce the output for one such group. The
result of the incremental aggregation operators is then just the
union of these results. We first discuss the case where the group
already exists and still exists after applying the input delta.
Updating an existing group. Assume the current and updated
state for 𝑔 as shown below:

S[𝑔] = (SUM, CNT,P,ℱ𝑔) S′ [𝑔] = (SUM′, CNT′,P′,ℱ′
𝑔)

The updated sum is produced by adding 𝑡 .𝑎 · 𝑛 for each inserted
input tuple with multiplicity 𝑛: Δ+ ⟨𝑡,P⟩𝑛 ∈ Δ𝑄𝑔 and subtracting
this amount for each deleted tuple: Δ- ⟨𝑡,P⟩𝑛 ∈ Δ𝑄𝑔. For instance,
if the delta contains the insertion of 3 duplicates of a tuple with 𝑎
value 5, then the SUM will be increased by 3 · 5.

SUM′ = SUM +
∑︁

Δ+ ⟨𝑡,P⟩𝑛 ∈Δ𝑄𝑔

𝑡 .𝑎 · 𝑛 −
∑︁

Δ- ⟨𝑡,P⟩𝑛 ∈Δ𝑄𝑔

𝑡 .𝑎 · 𝑛

The update for CNT is computed in the same fashion using 𝑛
instead of 𝑡 .𝑎 · 𝑛. The updated count in ℱ

′
𝑔 is computed for each

𝜌 ∈ Φ as:

ℱ
′
𝑔 [𝜌] =ℱ𝑔 [𝜌] +

∑︁
Δ+ ⟨𝑡,P⟩𝑛 ∈Δ𝑄𝑔∧𝜌∈P

𝑛 −
∑︁

Δ- ⟨𝑡,P⟩𝑛 ∈Δ𝑄𝑔∧𝜌∈P

𝑛

Based on ℱ
′
𝑔 we then determine the updated sketch for the group:

P′ = {𝜌 | ℱ′
𝑔 [𝜌] > 0}

We then output a pair of annotated delta tuples that deletes the
previous result for the group and inserts the updated result:

Δ- ⟨𝑔 ◦ (SUM),P⟩ Δ+ ⟨𝑔 ◦ (SUM′),P′⟩

Creating and Deleting Groups. For groups 𝑔 that are not in S, we
initialize the state for 𝑔 as shown below: S′ [𝑔] = (0, 0, ∅, ∅) and
only output Δ+ ⟨𝑔 ◦ (SUM′),P′⟩. An existing group gets deleted
if CNT ≠ 0 and CNT′ = 0. In this case we only output Δ- ⟨𝑔 ◦
(SUM),P⟩.
Average and Count. For average we maintain the same state as for
sum. The only difference is that the updated average is computed

62

EDBT ’26, 24-27 March 2026, Tampere (Finland) Pengyuan Li et al.

as SUM′
CNT′ . For count we only maintain the count and output CNT′.

In [30], we also present the incremental annotated semantics for
additional aggregation functions (min and max) which require
maintaining a sort order over the tuples in each group to deal with
deletion.

Continuing with Ex. 5.1, the output of the join (single delta
tuple with group 5) is fed into the aggregation operator using
sum. As no such group is in S we create new entry S[5]. After
maintaining the state, the output delta produced for this group is
{|Δ+ ⟨(5, 7), {𝑓1, 𝑔2}⟩|}. This result satisfies HAVING condition (selec-
tion 𝜎sum(𝑐)>5) and is passed on to the merge operator.

5.2.6 Top-k. The top-k operator 𝜏𝑘,𝑂 returns the first 𝑘 tuples
sorted on 𝑂 . As we are dealing with bag semantics, the top-k
tuples may contain a tuple with multiplicity larger than 1. As
before, we use Δ𝑄 to denote I(𝑄,Δ𝒟).
State Data. To be able to efficiently determine updates to the
top-k tuples with sketch annotations we maintain a nested map.
The outer map S is ordered on 𝑂 . It should be implemented using
a data structure like balanced search trees (BSTs) that provide
efficient access to entries in sort order. This map associates order-
by values 𝑜 with another map CNT which stores multiplicities for
each annotated tuple ⟨𝑡,P⟩ for which 𝑡 .𝑂 = 𝑜 .

S[𝑜] = (CNT)

and for any ⟨𝑡,P⟩ with 𝑡 .𝑂 = 𝑜 with ⟨𝑡,P⟩𝑛 ∈ Δ𝑄 we store

CNT[⟨𝑡,P⟩] = 𝑛

This data structure allows efficient updates to the multiplicity
of any annotated tuple based on the input delta as shown below.
Consider such a tuple ⟨𝑡,P⟩ with 𝑡 .𝑂 = 𝑜 with Δ+ ⟨𝑡,P⟩𝑛 ∈ Δ𝑄
and Δ- ⟨𝑡,P⟩𝑚 ∈ Δ𝑄 .

S′ [𝑜] [⟨𝑡,P⟩] = S[𝑜] [⟨𝑡,P⟩] + 𝑛 −𝑚

Computing Deltas. As 𝑘 is typically relatively small, we select
a simple approach for computing deltas by deleting the previous
top-k and then inserting the updated top-k. Should the need arise
to handle large 𝑘, we can use a balanced search tree and mark
nodes in the tree as modified when updating the multiplicity of
annotated tuples based on the input delta and use data structures
which enable efficient positional access under updates, e.g., order-
statistic trees [15]. Our simpler technique just fetches the first
tuples in sort order from S and S′ by accessing the keys stored in
the outer map S in sort order. For each 𝑜 we then iterate through
the tuples in S[𝑜] (in an arbitrary, but deterministic order since
they are incomparable) keeping track of the total multiplicity𝑚 of
tuples we have processed so far. As long as𝑚 ≤ 𝑘 we output the
current tuple and proceed to the next tuple (or order-by key once
we have processed all tuples in S[𝑜]). Once𝑚 ≥ 𝑘 , we terminate.
If the last tuple’s multiplicity exceeds the threshold we output this
tuple with the remaining multiplicity. Applied to S this approach
produces the tuples to delete and applied to S′ it produces the
tuples to insert:

Δ- 𝜏𝑘,𝑂 (S) Δ+ 𝜏𝑘,𝑂 (S′)

5.3 Complexity Analysis
We now analyze the runtime complexity of operators. Let 𝑛 denote
the input delta tuple size and 𝑝 denote the number of ranges of
the partition on which the sketch is build on. For table access,
selection, and projection, we need to iterate over these 𝑛 annotated
tuples to generate the output. As for these operations we do not

modify the sketches of tuples, the complexity is 𝑂 (𝑛). For aggre-
gation, for each aggregation function we maintain a hashmap that
tracks the current aggregation result for each group and a count for
each fragment that occurs in a sketch for each tuple in the group.
For each input delta tuple, we can update this information in 𝑂 (1)
if we assume that the number of aggregation functions used in
an aggregation operator is constant. Thus, the overall runtime for
aggregation is 𝑂 (𝑛 · 𝑝). For joins, we store bloom filters on the
join attributes to pre-filter the input as we will discuss further in
Sec. 6.2. Suppose the right input table has𝑚 tuples. Building such
a filter incurs a one-time cost of 𝑂 (𝑚) for scanning the table once.
Consider the part where we join a delta of size 𝑛 for the left input
with the right table producing 𝑜 output tuples. The cost this join
depends on what join algorithm is used ranging from𝑂 (𝑛+𝑚+𝑜)
for a hash join to 𝑂 (𝑛 · 𝑚 + 𝑜) for a nested loop join (in both
cases assuming the worst case where no tuples are filtered using
the bloom filter). For the top-k operator, we assume there are 𝑙
nodes stored in the balanced search tree. Building this tree will
cost𝑂 (𝑙 · log 𝑙) (only built once). An insertion, deletion, or lookup
will take 𝑂 (log 𝑙) time. Thus, the runtime complexity of the top-k
operator is𝑂 (𝑛 · log 𝑙). Regarding space complexity, selection and
projection only require constant space. For aggregation, the space
is linear in the number of groups and in 𝑝. For join, the bloom
filter’s size is linear in𝑚, but for a small constant factor. For top-k
operators, we store 𝑙 ≥ 𝑘 entries in the search tree, each requiring
𝑂 (𝑝) space. Thus, the overall space complexity for this operator
is 𝑂 (𝑙 · 𝑝).

5.4 Correctness Proof
We are now ready to state the main result of this paper, i.e., the
incremental operator semantics we have defined is an incremental
maintenance procedure. That is, it outputs valid sketch deltas.

THEOREM 5.1 (CORRECTNESS). I as defined in Sec. 4.4 is
an incremental maintenance procedure such that it takes as input
a state S, the annotated delta Δ𝒟, the ranges Φ, a query 𝑄 and
returns an updated state S′ and a provenance sketch delta ΔP:
I(𝑄,Φ,S,Δ𝒟) = (ΔP,S′). For any query 𝑄 , sketch P that is
valid for 𝐷, and state S corresponding to 𝐷 we have:

P[𝑄,Φ, 𝐷 ∪• Δ𝐷] ⊆ P ∪• I(𝑄,Φ,S,Δ𝒟)

PROOF SKETCH. We prove the statement by structural induc-
tion over the query demonstrating that applying 𝜇 to the result of
the incremental interpretation of the query yields a valid sketch
delta in the sense that applying this delta to the current version of
the sketch yields an over-approximation of an accurate sketch for
the updated database. The base case is a query consisting of single
table access operator. For the inductive step, we assume that for all
queries𝑄 with up to 𝑛 operators, I (ignoring 𝜇 applied at the end)
(i) outputs the same set of tuples as𝑄 under regular bag semantics
and that (ii) each result tuple is annotated with a sketch that is
sufficient for producing this tuple. Under this assumption we then
show through a case distinction for each algebra operator that this
invariant is preserved in the output of the operator evaluated on
the annotated delta produced for 𝑄 . We present the full proof in
[30]. □

6 The IMP System
While the semantics from Sec. 5 can be implemented in SQL, an in-
memory implementation can be significantly more efficient as we
can utilize data structures not available in a SQL-based implemen-
tation (see [30]). IMP is implemented as a stand-alone in-memory

63

In-memory Incremental Maintenance of Provenance Sketches EDBT ’26, 24-27 March 2026, Tampere (Finland)

engine that uses a backend database for fetching deltas and for
evaluating operations (joins) that require access to large amounts
of data. In Fig. 2, IMP’s incremental engine is the pipeline shown
in red. IMP executes I(𝑄,S,Δ𝒟) to generate delta sketches. For
joins (and cross products), Δℛ ⊲⊳ 𝒮 and ℛ ⊲⊳ Δ𝒮 are executed
by sending Δℛ (Δ𝒮) to the database and evaluating the join in
the database.

6.1 Storage Layout & State Data
We store data in a columnar representation for horizontal chunks
of a table (data chunks). Annotated inserted / deleted tuples are
stored in separate chunks. The annotations (provenance sketches)
of the rows in a data chunk are stored in a separate column as bit
sets.

Sketch & State Data. IMP stores sketches in a hash-table where
the key is a query template for which the sketch was created and
the value is the sketch and the state of the incremental operators
for this query. Here a query template refers to a version of a
query 𝑄 where constants in selection conditions are replaced
with placeholders such that two queries that only differ in these
constants have the same key. This is done to be able to efficiently
prefilter candidate sketches to be used for a query as the techniques
from [38] can determine whether a sketch for query 𝑄1 can be
used to answer a query𝑄2 if these queries share the same template.
Furthermore, for each sketch we store a version identifier to record
which database version the sketch corresponds to. IMP can persist
its state in the database.

6.2 Optimizations
Data transfer between IMP and the DBMS can become a bottle-
neck. We now introduce several optimizations that reduce com-
munication.

Bloom Filters For Join. For join operators, IMP uses the DBMS
to compute the result of ℛ ⊲⊳ Δ𝒮 and Δℛ ⊲⊳ 𝒮 which requires
sending Δℛ (or Δ𝒮) to the database. IMP maintains bloom filters
on the join attributes for both sides of equi-joins that are used
to filter out rows from Δℛ (and Δ𝒮) that do not have any join
partners in the other table. If according to the bloom filter no rows
from the delta have join partners then we can avoid the round trip
to the database.

Filtering Deltas Based On Selections. If a query involves a
selection and all operators in the subtree rooted at a selection
are stateless, then we can avoid fetching delta tuples from the
database that do not fulfill the selection’s condition as such tuples
will neither affect the state of operators downstream from the
selection nor will they impact the final maintenance result as their
decedents will be filtered by the incremental selection. That is, we
can push the selection conditions into the query that retrieves the
delta.

Optimizing Minimum, Maximum, and Top-k. If the input to
an aggregation with aggregation functions min or max or a top-k
operator is large, then maintaining the sorted map used in the state
of these operators to store all inputs can become a bottleneck.
Instead of storing the full input, we can only store the top / bottom
𝑙 tuples (𝑙 > 𝑘 for top-k and 𝑙 > 1 for min and max). By keeping a
record of the first 𝑙 tuples, it is guaranteed that we can delete at
least 𝑙 −𝑘 (or 𝑙 −1 for min and max) tuples from the input without
having to recapture the sketch. In practice, as most tuples deleted
will not the be in the top-k and updates contain both insertions and

deletions, a moderately sized 𝑙 is typically sufficient to completely
avoid recapture.

6.3 Concurrency Control & Sketch Versions
So far we have assumed that the database backend uses snapshot
isolation and that sketch versions are identified by snapshot iden-
tifiers. However, in snapshot isolation, each transaction sees data
committed before it started (identified by a snapshot identifier)
and its own changes. Thus, for a transaction that wants to use a
sketch after updating a table accessed by the query for the sketch,
we have to include the transaction’s updates when maintaining
the sketch. We can track these updates using standard audit log-
ging mechanisms supported nativly in databases like Oracle or
implemented through extensibility mechanisms like triggers to
keep a history of row versions. For statement-level snapshot isola-
tion (isolation level READ COMMITTED in systems like Postgres or
Oracle), we face the challenge that even if we run the queries for
incremental maintenance in the same transaction as the query that
uses the updated sketch, these queries may see different versions
of the database. Thus, supporting statement-level snapshot iso-
lation requires either deeper integration into the database to run
the maintenance query as of the same snapshot as the query that
uses the sketch or the use of techniques like reenactment [5, 6] to
reconstruct such database states.

6.4 Selecting Sketch Attributes and Ranges
Both the choice of attribute for a sketch and the choice of ranges
can affect the amount of data covered by a sketch. Regarding the
choice of attribute, we first identify which attributes are safe using
techniques from [38]. In [31] we studied cost-based selection of
attributes for sketches. For IMP we employ a heuristic to select
attributes based on the insights from [31]. We select attributes that
are important for a query such as group-by attributes or attributes
for which efficient access methods, e.g., an index, are available.
Regarding the choice of ranges, as long as ranges are fine-granular
enough and data is roughly evenly distributed across ranges, the
exact choice of ranges has typically neglectable effect on sketch
size. We use the bounds of equi-depth histograms maintained
by many DBMS as statistics as ranges. Note that we generate
ranges to cover the whole domain of an attribute instead of only
its active domain. If a significant fraction of the data in a relation
is updated, then this can lead to an imbalance in the amount of
data per range and in turn to a degradation of the performance
of sketches over time. As a significant change in distribution is
unlikely to occur frequently, we can simply update the ranges and
recapture sketches. In [30] we discuss potential strategies to avoid
this.

7 Experiments
We evaluate IMP against two baselines: full maintenance and an
approach that does not use PDBS to demonstrate the effectiveness
of IMP to improve the performance of workloads that mix queries
and updates. All experiments use a machine with 2 x 3.3Ghz
AMD Opteron 4238 CPUs (12 cores) and 128GB RAM running
Ubuntu 20.04 (linux kernel 5.4.0-96-generic) and Postgres 16.2.
IMP’s source code and the experimental setup are available at
[29]. Experiments are repeated at least 10 times. We report median
runtimes. The maximum variance was < 5% and < 1% in most
experiments.

Datasets and Workloads. We use the TPC-H benchmark, a real
world Crime dataset and a synthetic dataset (tables with 10M rows
with at least 11 attributes). Each synthetic table has a key attribute

64

EDBT ’26, 24-27 March 2026, Tampere (Finland) Pengyuan Li et al.

(a) 1U5Q, delta size: 20 tuples (b) 1U1Q, delta size: 20 tuples (c) 5U1Q, delta size: 20 tuples

(d) 1U5Q, delta size: 1 tuple (e) 1U1Q, delta size: 200 tuples (f) 5U1Q, delta size: 2000 tuples
Figure 6: Varying the delta size, we measure end-to-end workload runtime for NS, FM, and IMP.

(a) TPC-H 1GB (b) TPC-H 10GB (c) Crimes
Figure 7: Maintaining provenance sketches: incremental versus full maintenance on the TPC-H and Crime datasets.

id. For the other attributes, the values of one attribute (𝑎) are
chosen uniform at random. The remaining attributes are linearly
correlated with 𝑎 subject to Gaussian noise to create partially
correlated values.

7.1 Mixed Workload Performance
In this experiment, we measure the end-to-end runtime of IMP,
full maintenance (FM), and no-sketch (NS) on mixed workloads
consisting of queries and updates. Both IMP and FM start without
any sketches. The cost of maintaining and creating sketches is
included in the runtime. Each workload consists of 1000 opera-
tions (each operation is either a query or an update). We refer to
the ratio between queries and updates (the query-update ratio).
We use the technique from [38] to determine whether an existing
sketch for a query 𝑄 ′ can be used to answer the current query
𝑄 . If an existing sketch can be reused, we maintain the sketch if
necessary. Otherwise, we create a new sketch. When an update on
relation 𝑅 is executed, we determine the delta and append it to the
delta table for 𝑅, associating each tuple with a snapshot identifier.
This enables us to fetch only delta tuples of updates that were
executed after the sketch was last maintained.

We use a query template 𝑄𝑒𝑛𝑑𝑡𝑜𝑒𝑛𝑑 (see [30]) which is a group-
by-aggregation-having query over the synthetic data and delta
sizes 1, 20, 200 and 2000. We consider three query-update ratios:
1U1Q (one update per one query), 1U5Q (one update per five
queries) and 5U1Q (five updates per one query). For full mainte-
nance, whenever a sketch needs to be maintained, we recapture
it. Fig. 6 shows the runtime for several combinations of query-
update ratio and delta size (The x-axis indicates the total number
of operations executed so far). We present additional combina-
tions in [30]. FM has the highest cost: the cost of recapturing
sketches frequently outweighs the benefit of using sketches. IMP
outperforms both baselines, except for the extreme case 5U1Q
with delta size 2000 (per update) where 5 updates affecting at least
10k tuples in total are executed between two adjacent queries. In
the first part of each workload, the cost of creating provenance
sketches outweighs the benefits of sketch use. However, once a
sufficient set of sketches is available, PDBS outperforms the NS
baseline.

Insights: IMP significantly improves the performance of mixed
workloads using PDBS.

7.2 Incremental Versus Full maintenance
We now compare IMP against FM. We vary the delta size focusing
on realistic delta sizes: 10, 50, 100, 500 and 1000.

7.2.1 TPC-H. The results for TPC-H (www.https://www.tpc.
org/tpch/) at SF1 (∼ 1 GB) and SF10 (∼ 10GB) are shown in
Fig. 7a and 7b. We selected queries that benefit from sketches [38]
and are sufficiently complex (multiple joins, aggregation with
HAVING or top-k). We turn on the selection push down and join
bloom filter optimizations (see Sec. 6.2). The runtime of FM only
depends on the current size of the database. Thus, we do not
include results for different delta sizes for this method. IMP out-
performs FM by at least a factor of 3.9 and up to a factor of ∼2500,
demonstrating the effectiveness of incremental maintenance. Im-
portantly, the runtime of IMP, while depending on delta size, is
mostly unaffected by database size as join is the only incremental
operator accessing the database.

7.2.2 Crime Dataset. The Crime4 dataset consists of a 1.87GB
table with 7.3𝑀 incidents. We use two queries (see [30]): CQ1:
The number of crimes per year and beat (geographical location).
CQ2: Areas with more than 1000 crimes. As shown in Fig. 7c,
IMP outperforms FM by at least 2 orders of magnitude (OOM).

Insights: For deltas up to 1000 tuples, IMP outperforms FM by
several OOM.

7.3 Microbenchmarks
Next, we evaluate in detail how IMP’s performance is affected
by various workload parameters using the synthetic dataset. We
compare IMP against FM. The database size is kept constant, i.e.,
for FM, the runtime is not affected by varying the delta size.

7.3.1 Aggregation Functions and Groups. We use query
template 𝑄𝑔𝑟𝑜𝑢𝑝𝑠 (see [30]) that is a group-by aggregation query
with HAVING over a single table and vary the number of groups:

4https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

65

www.https://www.tpc.org/tpch/
www.https://www.tpc.org/tpch/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

In-memory Incremental Maintenance of Provenance Sketches EDBT ’26, 24-27 March 2026, Tampere (Finland)

(a) 𝑄ℎ𝑎𝑣𝑖𝑛𝑔 number of aggregation functions (b) 𝑄𝑔𝑟𝑜𝑢𝑝𝑠 number of groups (c) 𝑄 𝑗𝑜𝑖𝑛 1-n join

(d) 𝑄 𝑗𝑜𝑖𝑛 m-n join (e) 𝑄 𝑗𝑜𝑖𝑛𝑠𝑒𝑙 varying join selectivity (f) 𝑄𝑠𝑘𝑒𝑡𝑐ℎ , number of fragments of partition

Figure 8: Microbenchmarks (“realistic” delta size): varying delta size from 10 tuples to 1000 tuples.

(a) 𝑄ℎ𝑎𝑣𝑖𝑛𝑔 (b) 𝑄𝑔𝑟𝑜𝑢𝑝𝑠 (c) 𝑄 𝑗𝑜𝑖𝑛 (one join partner per tuple in 𝑆)

(d) 𝑄 𝑗𝑜𝑖𝑛 (varying #join partners per tuple in 𝑆) (e) 𝑄 𝑗𝑜𝑖𝑛𝑠𝑒𝑙 (f) 𝑄𝑠𝑘𝑒𝑡𝑐ℎ

Figure 9: Microbenchmarks: varying delta size to determine the “break even point” where FM outperforms IMP.

50, 1𝐾 , 5𝐾 and 500𝐾 . As the state S for aggregation contains
an entry for each group, we expect that runtime will increase
when increasing the number of groups. As shown in Fig. 8b, for
delta sizes up to 1000 tuples, IMP outperforms FM by 100x (500k
groups) to 1000x (50 groups). Fig. 9b shows that the break even
point lies at delta sizes between ∼3.5% (for 50 group) and ∼ 5.5%
for (500k groups). While the runtime of IMP increases when
increasing the number of groups, the effect is more pronounced
for FM that computes results for all groups. Fig. 8a and Fig. 9a
show the runtime of IMP vs. FM for a group-by having query
with 5k groups, varying the number of aggregation functions. IMP
outperforms FM by up to ∼ 100x for delta sizes up to ∼ 5% of the
database.

7.3.2 Joins. We evaluate group-by aggregation queries with
HAVING over the result of an equi-join using query template 𝑄 𝑗𝑜𝑖𝑛

(see [30]). Both input tables have 10𝑀 rows. The synthetic tables
are designed as the follows: for an𝑚−𝑛 join 𝑅 ⊲⊳ 𝑆 , the selectivity
is 100% for table 𝑆 , and there are 108/𝑛 distinct join attribute values
with a multiplicity of 𝑛; for the other table 𝑅, there are𝑚 tuples
that join with each distinct join attribute value in 𝑆 . For instance,
the result size for 2 − 2𝑘 as well as for 2 − 200𝑘 is 2 · 10𝑀 = 20𝑀
tuples.

Fig. 8c and Fig. 9c show the runtime of incremental vs. FM for
1 − 𝑛 joins, and Fig. 8d and Fig. 9d show results for𝑚 − 2𝐾 joins.
In the 1-n join experiment, the 1-20 join is more expensive than
the 1-20k and 1-200k joins because even through the 1-20 join has
less join result tuples, there are more groups for the aggregation
functions above the join operator as the join attribute of table 𝑆 is

also the group-by attribute for the query. There are 108/20 distinct
groups and each group has a multiplicity of 20. For the m-n join,
the queries all have the same number of groups. 50-2k has more
join results to process and, thus, is slower than 20-2k join.

Recall from Sec. 7.2.1, that IMP computes Δ𝑅 ⊲⊳ 𝑆 by running
a SQL query. Thus, incrementally maintaining joins requires send-
ing all delta tuples for the join inputs to the DBMS. That is, the
break even point is lower for 𝑄 𝑗𝑜𝑖𝑛 than for 𝑄ℎ𝑎𝑣𝑖𝑛𝑔. Our bloom-
filter optimization for joins can sometimes avoid an additional
round trip to the database for those tuples that do not have the join
partner. We further evaluate this optimization in Sec. 7.4.

To evaluate performance of queries with more selective joins,
we use a group-by-aggregation query over a join: 𝑄 𝑗𝑜𝑖𝑛𝑠𝑒𝑙 (𝑅 join
𝑆 , see [30]) and vary join selectivity: 1%, 5%, and 10%. Fig. 8e and
Fig. 9e show the runtime of IMP and FM. For small deltas, the
join selectivity has a smaller impact on IMP than for larger deltas
as for small deltas we are joining a small table (Δℛ) with a large
table (𝒮), i.e., the bottleneck is scanning the large table.

7.3.3 Varying Partition Granularity. We now vary #frag, the
number of fragments in the sketch’s partition. We use template
𝑄𝑠𝑘𝑒𝑡𝑐ℎ (see [30]) which is a group-by aggregation query with
HAVING over the results of a join. We vary the number of fragments
#frag from 10 to 5000. Fig. 8f and Fig. 9f show the runtime for
IMP and FM. While the cost of FM is impacted by #frag, the
dominating cost is evaluating the full capture query, resulting
in an insignificant runtime increase when #frag is increased. In
contrast, incremental maintenance cost increases linearly in the
delta size.

66

EDBT ’26, 24-27 March 2026, Tampere (Finland) Pengyuan Li et al.

(a) Optimization: filter delta

(b) Optimization: bloom filter realistic delta size

(c) Optimization: bloom filter large delta size

Figure 10: Optimizations in IMP: filtering deltas based on
selection conditions and using bloom filters for joins.

7.4 Optimizations
7.4.1 Selection push-down for deltas. We evaluate the effec-
tiveness of our delta selection push-down optimization that filters
the delta based on selection conditions in the query. We use query
𝑄𝑠𝑒𝑙𝑝𝑑 which is a group-by aggregation query (see [30]) and vary
the selectivity of the query’s WHERE clause. We fix delta size to
2.5% of the table and vary the fraction of delta tuples that fulfills
the condition from 2% to 100%. The results (Fig. 10a) demonstrate
that the cost of filtering delta tuples is amortized by reducing
maintenance cost and communication with the DBMS.

7.4.2 Join optimization using bloom filters. Another opti-
mization we applied in IMP is to use bloom filters to track which
tuples potentially have join partners. As in the microbenchmarks
for join, we use query 𝑄 𝑗𝑜𝑖𝑛𝑠𝑒𝑙 (see [30]). As shown in Fig. 10b
and 10c, filtering the delta using bloom filters is effective for all
delta sizes, even for larger selectivity, due to (i) the reduction in
data transfer between IMP and the database, (ii) the reduction
of the input size for the query evaluating Δℛ ⊲⊳ 𝒮 by reducing
the size of Δℛ, and (iii) reducing the input size for incremental
operators.

Insights: IMP’s performance is mainly impacted by delta size.
As join requires a round trip to the database, queries with join are
typically more expensive. Our bloom filter optimization reduces
this cost. Nonetheless, IMP significantly outperforms FM.

7.4.3 Top-K operator. For a top-k operator (Sec. 5.2.6) we
store its inputs in an ordered map to be able to deal with deletions
that remove a tuple from the current top-k. In practice keeping
a buffer of the top-𝑙 tuples for 𝑙 > 𝑘 is often sufficient. The
potential drawback is that if all tuples from the buffer are deleted,
we have to recapture the sketch. To evaluate this trade-off we run
an experiment varying 𝑙 (20, 50 and 100). The query we use is
a top-10 query 𝑄𝑡𝑜𝑝−𝑘 (see [30]). We then evaluate workloads

(a) Deleting from top-k groups

(b) Deleting random tuples
Figure 11: Top-k runtime, varying buffer size 𝑙

that delete data (20 tuples per update) from the table (the table
contains 50k tuples and 5k distinct group-by values). We consider
two extremes: (i) always delete tuples contributing to the top-k
and (ii) randomly delete tuples. If less than k groups remain in
the state data structure, IMP has to recapture the sketch. Fig. 11
shows the runtime varying 𝑙 . For the worst case workload (only
deleting tuples from the top-k), the additional cost of maintaining
a larger state for the top-k operator is amortized by reducing the
frequency of recapture. For the other extreme (uniform deletion),
recapture is rarely needed. Overall, larger buffer sizes 𝑙 can be
recommended [30].

Maintenance Strategies. In [30] we also evaluate the impact
of batch size on the cost of eager maintenance, demonstrating
that batch sizes below 50 tuples should be avoided. In general,
lazy maintenance is superior as we delay maintenance as long as
possible and avoid maintenance of sketches that are not used.

8 Conclusions And Future Work
We present the first approach for in-memory incremental main-
tenance of provenance sketches. Our IMP system implements
incremental maintenance rules for sketch-annotated data. Our ex-
perimental results demonstrate the effectiveness of our approach
and optimizations, outperforming full maintenance by several or-
ders of magnitude. In future work, in addition to extending IMP
with support for more operators, e.g., set difference, recursive
queries, or kNN search in vector databases, we will investigate
how to integrate provenance-based data skipping and incremental
maintenance of sketches with cost-based query optimization and
self-tuning. Another open research question is how IMP can be
extended as a general IVM engine for provenance information.
Furthermore, IMP can be extended for maintaining summarizes
of provenance [3, 4, 28] which, like sketches, can tolerate approx-
imation and are typically small. One application would be data
integration where we want to track the set of data sources a query
result depends on.

Acknowledgments
This work was supported by NSF Awards IIS #2420577 and IIS
#2420691.

Artifacts
IMP’s source code (folder IMP engine), experimental scripts,
and data (folder dataset) are provided in [29].

67

In-memory Incremental Maintenance of Provenance Sketches EDBT ’26, 24-27 March 2026, Tampere (Finland)

References
[1] Martín Abadi, Frank McSherry, and Gordon D. Plotkin. 2015. Foundations of

Differential Dataflow. In ETAPS, Vol. 9034. 71–83.
[2] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated

Selection of Materialized Views and Indexes in SQL Databases. In VLDB.
496–505.

[3] Eleanor Ainy, Pierre Bourhis, Susan B. Davidson, Daniel Deutch, and Tova
Milo. 2015. Approximated Summarization of Data Provenance. In CIKM.
483–492.

[4] Omar AlOmeir, Eugenie Yujing Lai, Mostafa Milani, and Rachel Pottinger.
2021. Summarizing Provenance of Aggregate Query Results in Relational
Databases. In ICDE. 1955–1960.

[5] Bahareh Arab, Dieter Gawlick, Vasudha Krishnaswamy, Venkatesh Radhakr-
ishnan, and Boris Glavic. 2016. Reenactment for Read-Committed Snapshot
Isolation. In CIKM. 841–850.

[6] Bahareh Arab, Dieter Gawlick, Vasudha Krishnaswamy, Venkatesh Radhakr-
ishnan, and Boris Glavic. 2018. Using Reenactment to Retroactively Capture
Provenance for Transactions. TKDE 30, 3 (2018), 599–612.

[7] Bahareh Sadat Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian
Zeng. 2018. GProM - A Swiss Army Knife for Your Provenance Needs. IEEE
Data Eng. Bull. 41, 1 (2018), 51–62.

[8] Deepavali Bhagwat, Laura Chiticariu, Wang Chiew Tan, and Gaurav Vijay-
vargiya. 2005. An annotation management system for relational databases.
VLDBJ 14, 4 (2005), 373–396.

[9] José A. Blakeley, Per Åke Larson, and Frank Wm. Tompa. 1986. Efficiently
Updating Materialized Views. In SIGMOD. 61–71.

[10] Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, and Val Tannen.
2023. DBSP: Automatic Incremental View Maintenance for Rich Query Lan-
guages. PVLDB 16, 7 (2023), 1601–1614.

[11] Peter Buneman and Eric K. Clemons. 1979. Efficiently Monitoring Relational
Databases. TODS 4, 3 (1979), 368–382.

[12] Stefano Ceri and Jennifer Widom. 1991. Deriving Production Rules for Incre-
mental View Maintenance. In VLDB. 577–589.

[13] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok
Shim. 1995. Optimizing Queries with Materialized Views. In ICDE. 190–200.

[14] Latha S. Colby, Timothy Griffin, Leonid Libkin, Inderpal Singh Mumick,
and Howard Trickey. 1996. Algorithms for Deferred View Maintenance. In
SIGMOD. 469–480.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, 3rd Edition. MIT Press.

[16] Stefan Fehrenbach and James Cheney. 2018. Language-integrated provenance.
Sci. Comput. Program. 155 (2018), 103–145.

[17] Shahram Ghandeharizadeh, Richard Hull, and Dean Jacobs. 1992. Implemen-
tation of Delayed Updates in Heraclitus. In EDBT, Vol. 580. 261–276.

[18] Boris Glavic. 2021. Data Provenance - Origins, Applications, Algorithms, and
Models. Foundations and Trends® in Databases 9, 3-4 (2021), 209–441.

[19] Boris Glavic, Renée J. Miller, and Gustavo Alonso. 2013. Using SQL for
Efficient Generation and Querying of Provenance Information. In In Search
of Elegance in the Theory and Practice of Computation - Essays Dedicated to
Peter Buneman, Vol. 8000. 291–320.

[20] Timothy Griffin and Leonid Libkin. 1995. Incremental Maintenance of Views
with Duplicates. In SIGMOD. 328–339.

[21] Ashish Gupta, Dinesh Katiyar, and Inderpal Singh Mumick. 1992. Count-
ing solutions to the View Maintenance Problem. In Workshop on Deductive
Databases, Vol. CITRI/TR-92-65. 185–194.

[22] Ashish Gupta and Inderpal Singh Mumick. 1995. Maintenance of Materialized
Views: Problems, Techniques, and Applications. IEEE Data Eng. Bull. 18, 2
(1995), 3–18.

[23] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. 1993. Main-
taining Views Incrementally. In SIGMOD. 157–166.

[24] Xiao Hu and Stavros Sintos. 2024. Finding Smallest Witnesses for Conjunctive
Queries. In ICDT. 24:1–24:20.

[25] Grigoris Karvounarakis and Todd J. Green. 2012. Semiring-annotated data:
queries and provenance? SIGMOD Rec. 41, 3 (2012), 5–14.

[26] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nöt-
zli, Daniel Lupei, and Amir Shaikhha. 2014. DBToaster: higher-order delta
processing for dynamic, frequently fresh views. VLDBJ 23, 2 (2014), 253–278.

[27] Volker Küchenhoff. 1991. On the Efficient Computation of the Difference
Between Concecutive Database States. In DOOD, Vol. 566. 478–502.

[28] Seokki Lee, Bertram Ludäscher, and Boris Glavic. 2020. Approximate Sum-
maries for Why and Why-not Provenance. PVLDB 13, 6 (2020), 912–924.

[29] Pengyuan Li, Boris Glavic, Dieter Gawlick, Vasudha Krishnaswamy, Zhen Hua
Liu, Danica Porobic, and Xing Niu. 2025. Experiments and Source Code
Repository. https://github.com/IITDBGroup/IMP_EDBT26.

[30] Pengyuan Li, Boris Glavic, Dieter Gawlick, Vasudha Krishnaswamy, Zhen Hua
Liu, Danica Porobic, and Xing Niu. 2025. In-memory Incremental Maintenance
of Provenance Sketches (extended version). arXiv:2505.20683.

[31] Ziyu Liu and Boris Glavic. 2025. Cost-based Selection of Provenance Sketches
for Data Skipping. CoRR abs/2504.19252 (2025). arXiv:2504.19252

[32] Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramamritham. 2001. Ma-
terialized View Selection and Maintenance Using Multi-Query Optimization.
In SIGMOD. 307–318.

[33] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In VLDB. 476–487.

[34] Haneen Mohammed, Charlie Summers, Sughosh Kaushik, and Eugene Wu.
2023. SmokedDuck Demonstration: SQLStepper. In SIGMOD. 183–186.

[35] Boris Motik, Yavor Nenov, Robert Edgar Felix Piro, and Ian Horrocks. 2015.
Incremental Update of Datalog Materialisation: the Backward/Forward Algo-
rithm. In AAAI. 1560–1568.

[36] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martin Abadi. 2013. Naiad: a timely dataflow system. In SOSP. 439–455.

[37] Derek Gordon Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul
Barham, and Martín Abadi. 2016. Incremental, Iterative Data Processing With
Timely Dataflow. Commun. ACM 59, 10 (2016), 75–83.

[38] Xing Niu, Boris Glavic, Ziyu Liu, Pengyuan Li, Dieter Gawlick, Vasudha
Krishnaswamy, Zhen Hua Liu, and Danica Porobic. 2021. Provenance-based
Data Skipping. PVLDB 15, 3 (2021), 451–464.

[39] Xing Niu, Raghav Kapoor, Boris Glavic, Dieter Gawlick, Zhen Hua Liu, Va-
sudha Krishnaswamy, and Venkatesh Radhakrishnan. 2019. Heuristic and
Cost-Based Optimization for Diverse Provenance Tasks. TKDE 31, 7 (2019),
1267–1280.

[40] Xing Niu, Raghav Kapoor, Boris Glavic, Dieter Gawlick, Zhen Hua Liu, and
Venkatesh Radhakrishnan. 2017. Provenance-Aware Query Optimization. In
ICDE. 473–484.

[41] Themistoklis Palpanas, Richard Sidle, Roberta Cochrane, and Hamid Pirahesh.
2002. Incremental Maintenance for Non-Distributive Aggregate Functions. In
VLDB. 802–813.

[42] Fotis Psallidas and Eugene Wu. 2018. Smoke: Fine-grained Lineage at Interac-
tive Speed. CoRR abs/1801.07237 (2018). arXiv:1801.07237

[43] Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. 2018.
ProvSQL: Provenance and Probability Management in PostgreSQL. PVLDB
11, 12 (2018), 2034–2037.

[44] Oded Shmueli and Alon Itai. 1984. Maintenance of Views. In SIGMOD.
240–255.

[45] Dimitra Vista. 1994. View maintenance in relational and deductive databases
by incremental query evaluation. In Proceedings of the 1994 Conference of the
Centre for Advanced Studies on Collaborative Research. 70.

[46] Jun Yang and Jennifer Widom. 2003. Incremental computation and maintenance
of temporal aggregates. VLDBJ 12, 3 (2003), 262–283.

[47] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun
Mao. 2010. Efficient querying and maintenance of network provenance at
internet-scale. In SIGMOD. 615–626.

[48] Daniel C. Zilio, Calisto Zuzarte, Sam Lightstone, Wenbin Ma, Guy M. Lohman,
Roberta Cochrane, Hamid Pirahesh, Latha S. Colby, Jarek Gryz, Eric Alton,
Dongming Liang, and Gary Valentin. 2004. Recommending Materialized
Views and Indexes with IBM DB2 Design Advisor. In ICAC. 180–188.

68

https://github.com/IITDBGroup/IMP_EDBT26
https://arxiv.org/abs/2504.19252
https://arxiv.org/abs/1801.07237

	Abstract
	1 Introduction
	2 Overview of IMP
	3 Related Work
	4 Background and Problem Definition
	4.1 Range-based Provenance Sketches
	4.2 Updates, Histories, and Deltas
	4.3 Sketch-Annotated Databases And Deltas
	4.4 Problem Definition

	5 Incremental Annotated Semantics
	5.1 Merging Sketch Deltas
	5.2 Incremental Relational Algebra
	5.3 Complexity Analysis
	5.4 Correctness Proof

	6 The IMP System
	6.1 Storage Layout & State Data
	6.2 Optimizations
	6.3 Concurrency Control & Sketch Versions
	6.4 Selecting Sketch Attributes and Ranges

	7 Experiments
	7.1 Mixed Workload Performance
	7.2 Incremental Versus Full maintenance
	7.3 Microbenchmarks
	7.4 Optimizations

	8 Conclusions And Future Work
	Acknowledgments
	References

