
mask rcnn分割算法实现
Mask R-CNN这玩意儿在实例分割领域绝对算是个狠角色,它不仅能框出物体,还能精确到像素级抠
图。咱们今天直接上代码,手把手教你怎么用PyTorch+Detectron2实现这个模型。别被那些论文里的数学
公式吓到,实操起来其实比想象中简单。
先来个环境配置暴击(记得提前装好CUDA):
```bash
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch
.org/whl/torch_stable.html
pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu111/tor
ch1.9/index.html
```
接着搞数据集注册,这里拿COCO数据集举例:
```python
from detectron2.data.datasets import register_coco_instances
register_coco_instances(
"my_dataset_train",
{},
"/path/to/train.json",
"/path/to/images"
)
```
配置模型参数才是重头戏,注意mask_head里的conv_dims决定了分割精细度:
```python
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R
_50_FPN_3x.yaml"))
cfg.DATASETS.TRAIN = ("my_dataset_train",)
cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 4
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcn
n_R_50_FPN_3x.yaml") # 预训练权重