Introduction
-------
This Matlab package implements machine learning algorithms described in the great textbook:
Pattern Recognition and Machine Learning by C. Bishop ([PRML](http://research.microsoft.com/en-us/um/people/cmbishop/prml/)).
It is written purely in Matlab language. It is self-contained. There is no external dependency.
Note: this package requires Matlab **R2016b** or latter, since it utilizes a new Matlab syntax called [Implicit expansion](https://cn.mathworks.com/help/matlab/release-notes.html?rntext=implicit+expansion&startrelease=R2016b&endrelease=R2016b&groupby=release&sortby=descending) (a.k.a. broadcasting). It also requires Statistics Toolbox (for some simple random number generator) and Image Processing Toolbox (for reading image data).
Design Goal
-------
* Succinct: The code is extremely compact. Minimizing code length is a major goal. As a result, the core of the algorithms can be easily spotted.
* Efficient: Many tricks for speeding up Matlab code are applied (e.g. vectorization, matrix factorization, etc.). Usually, functions in this package are orders faster than Matlab builtin ones (e.g. kmeans).
* Robust: Many tricks for numerical stability are applied, such as computing probability in logrithm domain, square root matrix update to enforce matrix symmetry\PD, etc.
* Readable: The code is heavily commented. Corresponding formulas in PRML are annoted. Symbols are in sync with the book.
* Practical: The package is not only readable, but also meant to be easily used and modified to facilitate ML research. Many functions in this package are already widely used (see [Matlab file exchange](http://www.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A49739)).
Installation
-------
1. Download the package to a local folder (e.g. ~/PRMLT/) by running:
```console
git clone https://github.com/PRML/PRMLT.git
```
2. Run Matlab and navigate to the folder (~/PRMLT/), then run the init.m script.
3. Run some demos in ~/PRMLT/demo folder. Enjoy!
FeedBack
-------
If you find any bug or have any suggestion, please do file issues. I am graceful for any feedback and will do my best to improve this package.
License
-------
Released under MIT license
Contact
-------
sth4nth at gmail dot com
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
机器学习 -PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学习算法的Matlab代码-PRML一书中机器学
资源推荐
资源详情
资源评论




























格式:rar 资源大小:69.3MB


收起资源包目录





































































































共 183 条
- 1
- 2
资源评论


毕业小助手
- 粉丝: 2791
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 政府如何借助AI+数智应用企业科技创新服务解决科技平台资源匮乏问题?.docx
- 政府在推进科技活动AI+数智应用化过程中面临哪些挑战,如何解决?.docx
- AI+时代下,技术转移机构如何通过AI+数智应用高效匹配企业技术需求与专家资源?.docx
- AI+时代下,技术转移机构如何构建高效的服务体系?.docx
- AI+时代下,如何提升技术转移服务的效率与质量?.docx
- AI+数智应用技术如何改变技术转移服务方式?.docx
- AI+数智应用技术如何助力技术经纪人提升成果转化效率?.docx
- AI+数智应用技术如何助力技术转移服务机构提升专业服务能力?.docx
- AI+数智应用技术转移服务如何助力机构打造差异化竞争力?.docx
- AI+数智应用技术转移解决方案如何帮助技术转移机构提升服务效率?.docx
- AI+数智应用技术转移如何帮助技术转移机构应对当前市场挑战?.docx
- AI+数智应用科技管理服务能否解决政府科技项目管理中的痛点?.docx
- AI+数智应用技术转移平台能为高校院所技转中心带来哪些实际价值?.docx
- AI+数智应用科技管理服务平台如何助力政府打造创新友好型科研环境?.docx
- AI+数智应用科技管理咨询服务如何帮助政府挖掘科技价值?.docx
- AI+数智应用科技活动服务有哪些特点适合政府活动?.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
