# Torrent_to_Drive
[](https://www.python.org/)
[](https://colab.research.google.com/drive/1oSUxHpz6UIEhtGjOw_SCAYWxYodwCYpf)
**Automatic Image Captioning**, using Deep Learning and Flickr-8k Dataset.
Also made a comparison between Xception Model and Inception Model.
This is the easiest way to generate captions and alt text for all kind of images using
Convolutional Neural Networks and a type of Recurrent Neural Network (LSTM).
## About
The image features will be extracted from CNN models trained on the imagenet dataset (see below)
and then the features are fed into the LSTM model which will be responsible for generating the image captions.
This Repo revolves around 2 Models provided by Keras.
- [Inception](https://keras.io/api/applications/inceptionv3/)
- [Xception](https://keras.io/api/applications/xception/)
1. Features Extracted can be found [here](Features)
1. Dataset used can be found [here](Dataset)
1. Jupyter Notebooks can be found [here](Notebook)
1. Models Trained can be found [here](Model)
1. Requirements and dependencies can be found [here](requirements.txt)
1. Caption generator can be found [here](generator.py)
Want to contribute? Suggestions, Error reporting, Bug Solving are highly
appreciated, please open an Issue and/or PR
[here](https://github.com/vybhav72954/Automated_Image_Captioning)
## Setup
- Setup a Virtual Environment (HIGHLY RECOMMENDED)
- Activate the Environment.
- Install Requirements, use `pip3 install -r requirements.txt`
- NOTE: A GPU accelerated hardware is recommended, after `TF v2.1`,
_there is no need to install GPU separately._ So no need to use `pip3 install tensorflow-gpu`
For GPU, separate Guidelines are provided [here](#GPU).
- TODO
### GPU
It is recommended to train these Neural Networks using GPU accelerated hardware.
User first need to have a CUDA enabled Graphics Card, if this condition is met, Download CUDA toolkit and cuDNN library.
For installation and help, these links are helpful:
[LINK1]
[LINK2]
[LINK3]
## Usage
TODO
#### Author
Made by [Vybhav Chaturvedi](https://www.linkedin.com/in/vybhav-chaturvedi-0ba82614a/)
## Disclaimer
Using GPU for training these networks can lead to Memory overflow errors,
long sessions can lead to overheating issues and can cause similar problems related to GPU computing.
Carefully read the CUDA guidelines to avoid any problems.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
Torrent_to_Drive 使用深度学习和Flickr-8k数据集进行自动图像字幕。 还对Xception模型和Inception模型进行了比较。 这是使用卷积神经网络和一种递归神经网络(LSTM)为所有类型的图像生成标题和替代文本的最简单方法。 关于 图像特征将从在imagenet数据集上训练的CNN模型中提取(请参见下文),然后将特征输入到LSTM模型中,后者将负责生成图像标题。 此回购围绕Keras提供的2个模型进行。 提取的功能可以在找到 使用的数据集可以在找到 Jupyter笔记本可以在找到 训练过的模型可以在找到 需求和依赖关系可以在找到 字幕生成器可以在找到 想要贡献? 建议,错误报告,错误解决受到高度赞赏,请打开问题和/或PR 建立 设置虚拟环境(强烈推荐) 激活环境。 安装需求,使用pip3 install -r requirements.txt 注意:
资源推荐
资源详情
资源评论



























收起资源包目录

























共 16 条
- 1

gu5218
- 粉丝: 37
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 大数据时代下计算机网络信息安全问题探讨.docx
- 中国在国际煤炭市场定价格局中的地位与策略-基于贸易网络核心一边缘结构分析.docx
- JEE架构办公自动化系统设计方案与实现.doc
- 卫星通信接收技术知识.doc
- 项目管理中的第三方监控.docx
- 人工智能带来的伦理与社会挑战.docx
- vb学生宿舍管理系统设计方案.doc
- 数据库课程设计参考模版.doc
- 提取二值化指纹图像中特征数据算法研究分析报告.doc
- 大数据检测在公安信息安全中的应用.docx
- 提高路桥施工项目管理水平的措施探讨.docx
- 《不要沉迷于网络游戏》教案.doc
- 大数据时代档案信息化建设措施.docx
- Fortran结构化程序设计.ppt
- 图像处理与影视后期课程教学大纲.docx
- 搭上电子商务快车的传统机械制造企业-河南黎明重工科技股份有限公司发展态势分析与展望.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

- 1
- 2
- 3
前往页