
I
摘 要
随着个性化服务的需求不断增长,基于协同过滤算法的美食推荐系统应运而生,
旨在为用户提供定制化的餐饮体验。该系统通过收集用户的历史行为数据,如评分、
购买记录和浏览历史,分析用户之间的相似性以及美食之间的关联性。管理员端具备
全面的功能,包括对用户信息、美食分类及特色美食的管理,以及对购买记录的监控
和系统的整体管理。前台则向用户提供直观的服务界面,包括展示推荐美食的首页、
特色美食展示、美食资讯获取以及个人中心,后者包含修改密码、查看购买记录和收
藏等功能。协同过滤算法通过对比用户间的相似度,自动将高相似度用户喜爱的美食
推荐给目标用户,从而实现个性化推荐。系统还可以根据物品间的相似性进行推荐,
例如为用户推荐他们过去喜欢的类似美食。这种智能推荐机制不仅提高了用户满意度,
也增加了商家的销售机会,为美食爱好者和餐饮业创造了双赢的局面。
系统采用基于 Python 语言网站开发技术设计的,结合 django 框架和 Mysql 数据
库管理系统对美食相关信息进行管理。按照软件工程学理论完成各阶段设计,经过调
试测试达到了管理美食信息的能力。满足了管理员和用户的需要。论文从系统开发过
程概述、开发工具简介、系统总体设计、系统开发、软件测试等几个方面进行了介绍。
最后总结了系统开发的得失。
关键词:美食;个性化推荐;django 框架;Mysql;

II
Abstract
With the growing demand for personalized service, a food recommendation system
based on collaborative filtering algorithms has emerged to provide users with a customized
dining experience. By collecting historical behavioral data such as ratings, purchase history,
and browsing history, the system analyzes similarities between users and associations
between foods. The administrator side has comprehensive functions, including the
management of user information, food classification and characteristic food, as well as the
monitoring of purchase records and the overall management of the system. The front desk
provides users with an intuitive service interface, including a home page displaying
recommended food, a special food display, food information access, and a personal center,
which includes functions such as changing passwords, viewing purchase records and
favorites. By comparing the similarity between users, the collaborative filtering algorithm
automatically recommends the favorite food of high similarity users to the target users, so
as to achieve personalized recommendation. The system can also make recommendations
based on similarities between items, such as recommending similar foods that users have
enjoyed in the past. This intelligent recommendation mechanism not only improves user
satisfaction, but also increases sales opportunities for merchants, creating a win-win situation
for food lovers and the catering industry.
The system is designed based on Python language website development technology,
combined with django framework and Mysql database management system to manage food
related information. According to the software engineering theory, the design of each stage
is completed, and the ability to manage food information is achieved through debugging and
testing. Meet the needs of administrators and users. This paper introduces the system
development process, development tools, system design, system development, software
testing and so on. Finally, the gains and losses of system development are summarized.
Key words: food; Personalized recommendation; django framework; Mysql;

大学本科毕业设计(论文)
目 录
1 绪 论........................................................................................................................3
1.1 研究背景和意义......................................................................................................3
1.2 国内外研究现状......................................................................................................3
1.3 论文的结构..............................................................................................................4
2 相关技术简介及部署环境说明................................................................................5
2.1 Python 语言 .............................................................................................................5
2.2 Django 框架 .............................................................................................................5
2.3 Hadoop 介绍 ............................................................................................................5
2.4 Scrapy 介绍..............................................................................................................6
2.5 Vue 框架 ..................................................................................................................6
2.6 MySQL 简介............................................................................................................6
2.7 B/S 结构...................................................................................................................7
2.8 小结..........................................................................................................................7
3 需求分析....................................................................................................................8
3.1 系统的可行性分析..................................................................................................8
3.2 系统需求分析..........................................................................................................9
3.3 开发目标................................................................................................................10
3.4 系统用例分析.......................................................................................................10
3.5 系统流程分析........................................................................................................11
3.5.1 用户登录流程....................................................................................11
3.5.2 系统操作流程....................................................................................12
3.6 小结........................................................................................................................13
4 系统总体设计..........................................................................................................14
4.1 系统功能结构设计图............................................................................................14
4.2 数据库设计与实现...............................................................................................14
4.2.1 E-R 模型简介 ..................................................................................14
4.2.2 系统 E-R 图 .....................................................................................15
4.2.3 系统数据表设计................................................................................15
4.3 小结........................................................................................................................19
5 系统详细设计与实现..............................................................................................20
5.1 前台功能实现........................................................................................................20
5.1.1 系统首页页面.....................................................................................20
5.1.2 个人中心.............................................................................................21
5.2 管理员功能实现....................................................................................................22
5.3 小结.......................................................................................................................26
6 系统测试..................................................................................................................27
6.1 测试的任务及目标...............................................................................................27
6.1.1 测试的任务......................................................................................27
6.1.2 测试的目标......................................................................................27

大学本科毕业设计(论文)
6.2 测试方案.............................................................................................................27
6.3 实例测试.............................................................................................................27
6.4 系统维护.............................................................................................................29
参考文献......................................................................................................................31
致 谢..........................................................................................................................32

大学本科毕业设计(论文)
3
1 绪 论
1.1 研究背景和意义
在数字化时代,人们对于信息的需求日益增长,尤其在美食领域,随着生活节奏
的加快和消费水平的提升,个性化餐饮推荐服务变得尤为重要。传统的美食推荐依赖
于用户主动搜索或基于内容推荐,这些方法无法深入挖掘用户的隐性需求且容易受到
信息过载的影响。鉴于此,协同过滤算法作为一种有效的推荐系统技术,通过分析大
量用户的行为数据来预测用户可能感兴趣的项目,从而为用户提供更加精准和个性化
的推荐。协同过滤主要分为用户基于协同过滤和物品基于协同过滤两种类型,前者关
注用户间的相似性,后者则侧重于物品之间的关联性。在美食推荐系统中应用协同过
滤算法,可以更好地理解用户的口味偏好,发现用户潜在的兴趣点,从而提供更符合
用户需求的美食建议。
实现一个基于协同过滤算法的美食推荐系统具有重要的研究意义和应用价值。它
能够显著提高用户体验,使用户在海量的美食信息中快速找到符合自己口味的选项,
节约时间成本同时增加消费满意度。对于商家而言,精准推荐可以帮助他们更好地了
解消费者的偏好,优化菜品结构,提升服务质量,增强顾客忠诚度,最终实现营业额
的提升。从学术角度来看,协同过滤算法的研究与应用推动了机器学习、数据挖掘等
领域的进步,为处理复杂数据分析问题提供了新的视角和技术手段。在技术层面,改
进和优化协同过滤算法可以有效应对冷启动问题、稀疏性问题以及可扩展性问题等挑
战,促进推荐系统技术的进一步发展。基于协同过滤算法的美食推荐系统不仅对消费
者和商家有着直接的经济价值,也对推荐系统领域的发展贡献了重要的理论和实践意
义。
1.2 国内外研究现状
在中国,美食推荐系统作为信息技术与传统餐饮业的融合产物,受到了学术界和
业界的广泛关注。伴随着大数据、云计算以及人工智能技术的飞速发展,国内的研究
人员和企业开发者在美食推荐系统的设计和实现上取得了显著成果。众多研究集中在
如何通过分析用户在线行为数据和评价反馈,利用协同过滤、深度学习等技术来提高
推荐的准确性和多样性。例如,一些研究关注于结合用户的地理位置信息进行地理标
签推荐,以期在满足口味的同时,也能为用户推荐附近的美食。面对中文文本数据的
复杂性,本土研究者还致力于开发适用于中文环境的自然语言处理技术,用以分析和
理解用户评论,从而提升推荐的相关性。考虑到中国区域饮食文化的多样性,部分研