Time dt accelX accelY accelZ omegaX omegaY omegaZ
46534.47837579 46534.47837579 1.7114864219577 0.1717911743144 9.80533438749 -0.0032006241515747 0.031231284764596 -0.0063569265706488
46536.397971133 1.91959534300258 0.83423778879884 0.68519339662861 10.098361301744 0.0061682862311423 0.0074921554772265 0.018982074411509
46536.407975484 0.0100043509955867 0.86576212047901 0.68649938713432 10.032802106483 0.005952543296471 0.0069608321556425 0.017633263249783
46536.418163923 0.010188439002377 0.91519280240716 0.62523947906417 9.9558217905103 0.0062926618020003 0.0081727073322961 0.016779273762316
46536.428073084 0.00990916099544847 0.89006888204609 0.52654855720454 9.9227735219338 0.0082677625317003 0.0073848012324517 0.016011382697968
46536.43803807 0.00996498600579798 0.84546354973917 0.48439127362386 9.9252224936437 0.011682098151945 0.005362081047584 0.016357675293273
46536.448204656 0.0101665859983768 0.7935240172783 0.58583758258028 9.8490341195971 0.015422783429153 0.0065407688904464 0.015396523999282
46536.458218421 0.0100137650006218 0.72785041468655 0.61697194519324 9.6780140016576 0.01614836591478 0.0073251535568794 0.01490054539939
46536.468137136 0.009918714997184 0.79448785248357 0.55484615341425 9.7008869014089 0.015652111027563 0.0003583805233475 0.014958963589481
46536.478104391 0.00996725499862805 0.80246967461103 0.52063923040212 9.7694238661976 0.014936294373429 -0.0012763765551546 0.015053619051059
46536.488107245 0.0100028540036874 0.76254422341938 0.6398383458418 9.705790286268 0.014936850217415 0.0016945799281186 0.0149465761934
46536.497991932 0.0098846870023408 0.79081258990647 0.69941259396553 9.5733567433278 0.0094878226848024 0.00032139293890078 0.01523208976439
46536.508004021 0.0100120889983373 0.8339957014205 0.5570157048707 9.5788082318286 0.003353149282082 -0.0040693160019343 0.015572276299732
46536.518074282 0.0100702609997825 0.78907134620743 0.44119834914009 9.5612269970543 0.0019981768897697 -0.0039299186016442 0.015237434854772
46536.527981651 0.00990736899984768 0.72739564427631 0.53667359676908 9.4864179474962 0.0022249503563042 -0.0044534308113976 0.016007319626556
46536.538021677 0.0100400259980233 0.71578629763487 0.59136755725372 9.4840452553717 0.00044370780285861 -0.0093744161896879 0.015872721682573
46536.547950822 0.0099291450023884 0.71811335298964 0.59762742366566 9.552678467066 -0.0032453483675702 -0.012547753761235 0.016818813430187
46536.557999431 0.0100486090013874 0.73492635004119 0.63546831011581 9.5071566970061 -0.0055080461124347 -0.01120559069705 0.017286991415659
46536.567995396 0.00999596499605104 0.72341739753501 0.70255306359844 9.4968881924552 -0.0098793391955695 -0.014150752092492 0.01798194270331
46536.577965282 0.00996988599945325 0.74154978790476 0.66033510405867 9.5954099635869 -0.014391438316234 -0.018797639278618 0.018055151297813
46536.588004853 0.0100395710032899 0.80515731971905 0.65026483844987 9.6762284690489 -0.016762722568799 -0.020803493386826 0.018127878603141
46536.59796822 0.00996336699608946 0.78357872176119 0.67589011268239 9.6810241986915 -0.018130314183479 -0.018875469378802 0.01838169681267
46536.607932465 0.00996424500044668 0.77321691349701 0.70839659578003 9.6978355688878 -0.019448767055957 -0.020661148971981 0.01825694229077
46536.618084055 0.0101515900023514 0.81834937647246 0.67974710641303 9.6947102335546 -0.020905451997564 -0.021139476626184 0.017934900947154
46536.627937427 0.00985337200108916 0.80184197000159 0.61899004045107 9.7289086985214 -0.019875634197929 -0.021609055132257 0.017526165805081
46536.637943072 0.0100056449955446 0.81655067450135 0.64096653438341 9.7332273937432 -0.01815128906824 -0.022678696862418 0.017012240934319
46536.647938137 0.00999506500374991 0.80992807332615 0.6238115542259 9.7455082846817 -0.015485595708004 -0.023656892333055 0.015814904794171
46536.657945077 0.0100069399995846 0.77552886232723 0.59871482109202 9.7737370419795 -0.013071256351803 -0.023685858483097 0.016141169075045
46536.667991572 0.0100464950010064 0.78170453297814 0.51520759792821 9.8193464856826 -0.011755567899033 -0.025474479710633 0.016130493713789
46536.677951307 0.00995973499811953 0.81369885303142 0.49248145823898 9.9390995128302 -0.0086572327141778 -0.027764307754038 0.01607041965672
46536.687966927 0.0100156199987396 0.82175402507671 0.57772923950313 9.9497945859056 -0.0054476478070511 -0.025254161590932 0.014921356708212
46536.697943256 0.00997632900543977 0.8274909213152 0.59999985357766 9.9027403980198 -0.0068820006359935 -0.022378037352292 0.01325465320198
46536.707992273 0.0100490169934346 0.87117228311792 0.54538487554101 9.8937493383168 -0.0089382005405945 -0.023609831749448 0.012584955221683
46536.718114171 0.010121898005309 0.84917144065023 0.46444714420986 9.8839769375693 -0.010882470459505 -0.022037856987031 0.013304211938431
46536.727966174 0.00985200300056022 0.8153657245527 0.43702007257838 9.7945053969339 -0.011543599890579 -0.019717678438976 0.013167080147666
46536.737926431 0.00996025699714664 0.78723086586979 0.46883206169163 9.7797895873938 -0.013493059906993 -0.02098552667313 0.013628018125516
46536.747938233 0.0100118019981892 0.74471623598932 0.50349225243788 9.7952861492847 -0.016711600920944 -0.02044019767216 0.013920815406689
46536.758140712 0.0102024790030555 0.72372880059093 0.5814334145722 9.754128226892 -0.019279360782802 -0.019796668021336 0.014580693095686
46536.768001332 0.00986061999719823 0.76140448050229 0.59845340238637 9.8221489928582 -0.023914456665382 -0.022833167818136 0.015365089131333
46536.777978143 0.00997681100125192 0.80503880842694 0.55743539202841 9.9353916439295 -0.028754288165575 -0.023602192645416 0.016690325761633
46536.787955924 0.00997778100281721 0.8188629871629 0.52360508322415 10.04342289734 -0.030463644940738 -0.020588363748603 0.016592776897388
46536.797911583 0.00995565899938811 0.79722353908847 0.58222432074053 10.066744462739 -0.031256598199628 -0.018188609186313 0.01721036036278
46536.807944446 0.0100328629996511 0.8024100082252 0.58942067262945 10.094877793328 -0.033741108469683 -0.017219817808366 0.017150306308363
46536.818041644 0.01009719799913 0.83909850699142 0.47159257173503 10.179976124329 -0.034481942199231 -0.017651845137111 0.016505260362108
46536.827997424 0.00995577999856323 0.8320937309427 0.54006868597478 10.21785470568 -0.031279150869346 -0.013919568366544 0.016519471307792
46536.837913042 0.00991561800037744 0.7667846713013 0.53974338307856 10.215971499828 -0.029714778238944 -0.010652633111563 0.016870550611623
46536.847912431 0.00999938900349662 0.7646869706061 0.55383687561678 10.255365774854 -0.027479061503103 -0.012449238144828 0.01624796801988
46536.857898508 0.0099860769987572 0.78751892501519 0.50794634427426 10.361465908625 -0.025611702277637 -0.011097852423104 0.015276272816898
46536.867989741 0.0100912330017309 0.77283108626291 0.49050939263312 10.379831022332 -0.021918446935992 -0.0063911745596384 0.014280831894363
46536.877939844 0.00995010299811838 0.78788642332347 0.49664298373815 10.332771368982 -0.018957679895593 -0.0049299983756927 0.013253207110209
46536.887906136 0.00996629199653398 0.81305845982495 0.42621153617743 10.338370663635 -0.017630527911254 -0.0039144986193388 0.011851726043677
46536.897899367 0.00999323100404581 0.79996969085121 0.39217480575082 10.306920064089 -0.013797948724566 -0.00054782382643794 0.011026467137126
46536.907941256 0.0100418889996945 0.75461423722353 0.42682858488819 10.281642054476 -0.011702756415881 0.0020468497475277 0.011449997066557
46536.917960544 0.0100192879981478 0.74043710164 0.43951429715496 10.229645746305 -0.011529842953499 0.0041263222853986 0.010777997506573
46536.928087742 0.0101271980020101 0.726946536394 0.33172215258172 10.162078884359 -0.012797366510474 0.0051858739425888 0.010808297880587
46536.938157482 0.0100697399975616 0.7291295559349 0.25592382969446 10.146947051705 -0.011306761533903 0.0064464928512005 0.011578053198499
46536.948129197 0.00
GTSAM-4.0.3 MATLAB 工具箱

这是 GTSAM_4.0.3 MATLAB 工具箱,它是 GTSAM C++ 库的 MATLAB 包装器。
将gtsam_toolbox文件夹添加到您的 MATLAB 路径中 - 在 MATLAB 文件浏览器中,右键单击该文件夹,然后单击“添加到路径 - >此文件夹”(不要将子文件夹添加到您的路径)。
运行 gtsamExamples.fig 即可显示案例
GTSAM-4.0.3 MATLAB 工具箱是一个针对GTSAM C++库的接口,允许用户通过MATLAB环境来访问和使用GTSAM的功能。GTSAM(Georgia Tech Smoothing and Mapping library)是一个用于解决因子图中的优化问题的C++库,主要应用于机器人定位与映射(SLAM)和计算机视觉中的因子图优化。它通过提供一个简洁的API和高级功能来帮助开发者更容易地实现复杂的因子图优化算法。
要使用GTSAM-4.0.3 MATLAB工具箱,用户需要将包含该工具箱的文件夹添加到MATLAB的路径中。这样做可以让MATLAB识别并使用该工具箱中的函数和示例。添加路径的步骤通常涉及在MATLAB的文件浏览器中找到gtsam_toolbox文件夹,右键点击并选择“添加到路径 -> 仅此文件夹”,这样可以避免添加不必要的子文件夹。
在成功添加工具箱到MATLAB路径之后,用户可以通过运行gtsamExamples.fig文件来查看提供的案例。这些案例展示了如何使用GTSAM工具箱解决具体的优化问题,是理解和学习如何操作和扩展GTSAM应用的宝贵资源。通过实际操作案例,用户可以快速掌握GTSAM在各种场景下的使用方法。
GTSAM-4.0.3 MATLAB工具箱的使用可以帮助研究人员和工程师更加方便地在MATLAB环境下进行因子图优化,从而在SLAM和其他需要进行状态估计的领域中得到精确和可靠的解决方案。由于MATLAB具有强大的数值计算能力和直观的编程接口,结合GTSAM的高效算法,这个工具箱为学术研究和工业应用提供了一个强大的平台。
使用GTSAM-4.0.3 MATLAB工具箱前,用户需要确保自己的MATLAB版本与工具箱兼容。此外,虽然工具箱提供了基础的使用示例,但是对于GTSAM库的深入了解仍然是必要的,这有助于更好地利用库中的高级功能和定制优化算法。用户还可以参考官方文档和相关教程,以获得更深入的理解和最佳实践。
MATLAB本身是一个强大的工程计算平台,而GTSAM-4.0.3 MATLAB工具箱则是该平台上的一个扩展工具,它为工程问题的解决提供了新的可能性。借助这个工具箱,用户可以更加专注于问题的解决,而不必担心底层优化算法的复杂性。无论是进行学术研究还是开发实际的应用程序,GTSAM-4.0.3 MATLAB工具箱都是一个值得推荐的工具。


wild-civil
- 粉丝: 37
最新资源
- Android Course Work-移动应用开发资源
- python教案.pdf
- 网络技术及应用课件电子教案课件整套教学课件.pptx
- 本科毕业论文:LDPC码的编译码算法研究.pdf
- 网络营销教案完整版讲义.doc
- 史丰收速算法是以史丰收教授的名字命名的.pdf
- 数学教案-小数的连除、除加、除减混合运算和简便算法.docx
- 泸州市十郎区块链同城网人事管理系统.doc
- 项目管理理论的重大科技模式研究.doc
- 自动化生产实习心得体会.docx
- 银行软件测试面试题目.docx
- 学校网络规划投标书.doc
- 网络课程设计标准市公开课一等奖百校联赛优质课金奖名师赛课获奖课件.ppt
- 陕西省项目管理师报考条件.docx
- 使用正版软件自查报告.docx
- 武汉大学网络营销().pptx