<div align="center">
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/en/mmcv-logo.png" width="300"/>
<div> </div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div> </div>
</div>
[](https://mmcv.readthedocs.io/en/latest/)
[](https://mmcv.readthedocs.io/en/latest/get_started/installation.html)
[](https://pypi.org/project/mmcv/)
[](https://pytorch.org/get-started/previous-versions/)
[](https://developer.nvidia.com/cuda-downloads)
[](https://pypi.org/project/mmcv)
[](https://github.com/open-mmlab/mmcv/actions)
[](https://codecov.io/gh/open-mmlab/mmcv)
[](https://github.com/open-mmlab/mmcv/blob/master/LICENSE)
English | [简体中文](README_zh-CN.md)
## Highlights
The OpenMMLab team released a new generation of training engine [MMEngine](https://github.com/open-mmlab/mmengine) at the World Artificial Intelligence Conference on September 1, 2022. It is a foundational library for training deep learning models. Compared with MMCV, it provides a universal and powerful runner, an open architecture with a more unified interface, and a more customizable training process.
At the same time, MMCV released [2.x](https://github.com/open-mmlab/mmcv/tree/2.x) release candidate version and will release 2.x official version on January 1, 2023.
In version 2.x, it removed components related to the training process and added a data transformation module. Also, starting from 2.x, it renamed the package names **mmcv** to **mmcv-lite** and **mmcv-full** to **mmcv**. For details, see [Compatibility Documentation](docs/en/compatibility.md).
MMCV will maintain both `1.x` and `2.x` versions. For details, see [Branch Maintenance Plan](README.md#branch-maintenance-plan).
## Introduction
MMCV is a foundational library for computer vision research and it provides the following functionalities:
- [Universal IO APIs](https://mmcv.readthedocs.io/en/latest/understand_mmcv/io.html)
- [Image/Video processing](https://mmcv.readthedocs.io/en/latest/understand_mmcv/data_process.html)
- [Image and annotation visualization](https://mmcv.readthedocs.io/en/latest/understand_mmcv/visualization.html)
- [Useful utilities (progress bar, timer, ...)](https://mmcv.readthedocs.io/en/latest/understand_mmcv/utils.html)
- [PyTorch runner with hooking mechanism](https://mmcv.readthedocs.io/en/latest/understand_mmcv/runner.html)
- [Various CNN architectures](https://mmcv.readthedocs.io/en/latest/understand_mmcv/cnn.html)
- [High-quality implementation of common CPU and CUDA ops](https://mmcv.readthedocs.io/en/latest/understand_mmcv/ops.html)
It supports the following systems:
- Linux
- Windows
- macOS
See the [documentation](http://mmcv.readthedocs.io/en/latest) for more features and usage.
Note: MMCV requires Python 3.6+.
## Installation
There are two versions of MMCV:
- **mmcv-full**: comprehensive, with full features and various CPU and CUDA ops out of the box. It takes longer time to build.
- **mmcv**: lite, without CPU and CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops.
**Note**: Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full version is highly recommended if CUDA is available`.
### Install mmcv-full
Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation).
The command to install mmcv-full:
```bash
pip install -U openmim
mim install mmcv-full
```
If you need to specify the version of mmcv-full, you can use the following command:
```bash
mim install mmcv-full==1.7.0
```
If you find that the above installation command does not use a pre-built package ending with `.whl` but a source package ending with `.tar.gz`, you may not have a pre-build package corresponding to the PyTorch or CUDA or mmcv-full version, in which case you can [build mmcv-full from source](https://mmcv.readthedocs.io/en/latest/get_started/build.html).
<details>
<summary>Installation log using pre-built packages</summary>
Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html<br />
Collecting mmcv-full<br />
<b>Downloading https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/mmcv_full-1.6.1-cp38-cp38-manylinux1_x86_64.whl</b>
</details>
<details>
<summary>Installation log using source packages</summary>
Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html<br />
Collecting mmcv-full==1.6.0<br />
<b>Downloading mmcv-full-1.6.0.tar.gz</b>
</details>
For more installation methods, please refer to the [Installation documentation](https://mmcv.readthedocs.io/en/latest/get_started/installation.html).
### Install mmcv
If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation).
```bash
pip install -U openmim
mim install mmcv
```
## Branch Maintenance Plan
MMCV currently has two branches, the master and 2.x branches, which go through the following three phases.
| Phase | Time | Branch | description |
| -------------------- | --------------------- | --------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
| RC Period | 2022/9/1 - 2022.12.31 | Release candidate code (2.x version) will be released on 2.x branch. Default master branch is still 1.x version | Master and 2.x branches iterate normally |
| Compatibility Period | 2023/1/1 - 2023.12.31 | **Default master branch will be switched to 2.x branch**, and 1.x branch will correspond to 1.x version | We still maintain the old version 1.x, respond to user needs, but try not to introduce changes that break compatibility; master branch iterates normally |
| Maintenance Period | From 2024/1/1 | Default master branch corresponds to 2.x version and 1.x branch is 1.x version | 1.x branch is in maintenance phase, no more new feature support; master branch is iterating normally |
## Supported projects
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLa
人脸识别-面向计算机视觉的基础库.zip
需积分: 0 137 浏览量
更新于2023-02-01
收藏 7.67MB RAR 举报
人脸识别-面向计算机视觉的基础库,支持 Linux、Windows 以及 MacOS 平台。它提供了众多功能,包括基于 PyTorch 的通用训练框架、高质量实现的常见 CUDA 算子、通用的 IO 接口、图像和视频处理、图像和标注结果可视化、多种 CNN 网络提供了如下众多功能:
通用的 IO 接口
图像和视频处理
图像和标注结果可视化
常用小工具(进度条,计时器等)
基于 PyTorch 的通用训练框架
多种 CNN 网络结构
高质量实现的常见 CUDA 算子
人脸识别-面向计算机视觉的基础库,支持 Linux、Windows 以及 MacOS 平台。它提供了众多功能,包括基于 PyTorch 的通用训练框架、高质量实现的常见 CUDA 算子、通用的 IO 接口、图像和视频处理、图像和标注结果可视化、多种 CNN 网络提供了如下众多功能:人脸识别-面向计算机视觉的基础库,支持 Linux、Windows 以及 MacOS 平台。它提供了众多功能,包括基于 PyTorch 的通用训练框架、高质量实现的常见 CUDA 算子、通用的 IO 接口、图像和视频处理、图像和标注结果可视化、多种

NOGE2022
- 粉丝: 313
最新资源
- 供选择的题目也可自己搜集题目基于单片机技术的数据采集.doc
- 算法分析与设计动态规划ppt课件.ppt
- 拒绝网络不良诱惑.pptx
- 2022年下半年软件设计师考试下午真题案例分析题.doc
- 电子商务人才培养体系研究.doc
- 信息化技术在小学数学教学中的有效应用分析优秀科研论文报告论文6.docx
- 项目管理整体实施方案内容及工作流程.doc
- 环境影响评价常用软件.ppt
- 科技项目管理系统图.pdf
- 信息系统项目管理师常见计算题详解总结.doc
- (源码)基于TensorFlow 2.x的YOLOv7目标检测模型.zip
- 拓展互联网-合作方案.doc
- 工业机器人现场编程运动模式操纵.pptx
- 2023年计算机基础知识试题及答案精华版.doc
- 工程总承包模式及其项目管理要点(附案例).ppt
- 基于单片机的电梯控制系统的设计之开题报告.doc