# Eigen Tensors {#eigen_tensors}
Tensors are multidimensional arrays of elements. Elements are typically scalars,
but more complex types such as strings are also supported.
[TOC]
## Tensor Classes
You can manipulate a tensor with one of the following classes. They all are in
the namespace `::Eigen.`
### Class Tensor<data_type, rank>
This is the class to use to create a tensor and allocate memory for it. The
class is templatized with the tensor datatype, such as float or int, and the
tensor rank. The rank is the number of dimensions, for example rank 2 is a
matrix.
Tensors of this class are resizable. For example, if you assign a tensor of a
different size to a Tensor, that tensor is resized to match its new value.
#### Constructor `Tensor<data_type, rank>(size0, size1, ...)`
Constructor for a Tensor. The constructor must be passed `rank` integers
indicating the sizes of the instance along each of the the `rank`
dimensions.
// Create a tensor of rank 3 of sizes 2, 3, 4. This tensor owns
// memory to hold 24 floating point values (24 = 2 x 3 x 4).
Tensor<float, 3> t_3d(2, 3, 4);
// Resize t_3d by assigning a tensor of different sizes, but same rank.
t_3d = Tensor<float, 3>(3, 4, 3);
#### Constructor `Tensor<data_type, rank>(size_array)`
Constructor where the sizes for the constructor are specified as an array of
values instead of an explicitly list of parameters. The array type to use is
`Eigen::array<Eigen::Index>`. The array can be constructed automatically
from an initializer list.
// Create a tensor of strings of rank 2 with sizes 5, 7.
Tensor<string, 2> t_2d({5, 7});
### Class `TensorFixedSize<data_type, Sizes<size0, size1, ...>>`
Class to use for tensors of fixed size, where the size is known at compile
time. Fixed sized tensors can provide very fast computations because all their
dimensions are known by the compiler. FixedSize tensors are not resizable.
If the total number of elements in a fixed size tensor is small enough the
tensor data is held onto the stack and does not cause heap allocation and free.
// Create a 4 x 3 tensor of floats.
TensorFixedSize<float, Sizes<4, 3>> t_4x3;
### Class `TensorMap<Tensor<data_type, rank>>`
This is the class to use to create a tensor on top of memory allocated and
owned by another part of your code. It allows to view any piece of allocated
memory as a Tensor. Instances of this class do not own the memory where the
data are stored.
A TensorMap is not resizable because it does not own the memory where its data
are stored.
#### Constructor `TensorMap<Tensor<data_type, rank>>(data, size0, size1, ...)`
Constructor for a Tensor. The constructor must be passed a pointer to the
storage for the data, and "rank" size attributes. The storage has to be
large enough to hold all the data.
// Map a tensor of ints on top of stack-allocated storage.
int storage[128]; // 2 x 4 x 2 x 8 = 128
TensorMap<Tensor<int, 4>> t_4d(storage, 2, 4, 2, 8);
// The same storage can be viewed as a different tensor.
// You can also pass the sizes as an array.
TensorMap<Tensor<int, 2>> t_2d(storage, 16, 8);
// You can also map fixed-size tensors. Here we get a 1d view of
// the 2d fixed-size tensor.
TensorFixedSize<float, Sizes<4, 5>> t_4x3;
TensorMap<Tensor<float, 1>> t_12(t_4x3.data(), 12);
#### Class `TensorRef`
See Assigning to a TensorRef below.
## Accessing Tensor Elements
#### `<data_type> tensor(index0, index1...)`
Return the element at position `(index0, index1...)` in tensor
`tensor`. You must pass as many parameters as the rank of `tensor`.
The expression can be used as an l-value to set the value of the element at the
specified position. The value returned is of the datatype of the tensor.
// Set the value of the element at position (0, 1, 0);
Tensor<float, 3> t_3d(2, 3, 4);
t_3d(0, 1, 0) = 12.0f;
// Initialize all elements to random values.
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 4; ++k) {
t_3d(i, j, k) = ...some random value...;
}
}
}
// Print elements of a tensor.
for (int i = 0; i < 2; ++i) {
LOG(INFO) << t_3d(i, 0, 0);
}
## TensorLayout
The tensor library supports 2 layouts: `ColMajor` (the default) and
`RowMajor`. Only the default column major layout is currently fully
supported, and it is therefore not recommended to attempt to use the row major
layout at the moment.
The layout of a tensor is optionally specified as part of its type. If not
specified explicitly column major is assumed.
Tensor<float, 3, ColMajor> col_major; // equivalent to Tensor<float, 3>
TensorMap<Tensor<float, 3, RowMajor> > row_major(data, ...);
All the arguments to an expression must use the same layout. Attempting to mix
different layouts will result in a compilation error.
It is possible to change the layout of a tensor or an expression using the
`swap_layout()` method. Note that this will also reverse the order of the
dimensions.
Tensor<float, 2, ColMajor> col_major(2, 4);
Tensor<float, 2, RowMajor> row_major(2, 4);
Tensor<float, 2> col_major_result = col_major; // ok, layouts match
Tensor<float, 2> col_major_result = row_major; // will not compile
// Simple layout swap
col_major_result = row_major.swap_layout();
eigen_assert(col_major_result.dimension(0) == 4);
eigen_assert(col_major_result.dimension(1) == 2);
// Swap the layout and preserve the order of the dimensions
array<int, 2> shuffle(1, 0);
col_major_result = row_major.swap_layout().shuffle(shuffle);
eigen_assert(col_major_result.dimension(0) == 2);
eigen_assert(col_major_result.dimension(1) == 4);
## Tensor Operations
The Eigen Tensor library provides a vast library of operations on Tensors:
numerical operations such as addition and multiplication, geometry operations
such as slicing and shuffling, etc. These operations are available as methods
of the Tensor classes, and in some cases as operator overloads. For example
the following code computes the elementwise addition of two tensors:
Tensor<float, 3> t1(2, 3, 4);
...set some values in t1...
Tensor<float, 3> t2(2, 3, 4);
...set some values in t2...
// Set t3 to the element wise sum of t1 and t2
Tensor<float, 3> t3 = t1 + t2;
While the code above looks easy enough, it is important to understand that the
expression `t1 + t2` is not actually adding the values of the tensors. The
expression instead constructs a "tensor operator" object of the class
TensorCwiseBinaryOp<scalar_sum>, which has references to the tensors
`t1` and `t2`. This is a small C++ object that knows how to add
`t1` and `t2`. It is only when the value of the expression is assigned
to the tensor `t3` that the addition is actually performed. Technically,
this happens through the overloading of `operator=()` in the Tensor class.
This mechanism for computing tensor expressions allows for lazy evaluation and
optimizations which are what make the tensor library very fast.
Of course, the tensor operators do nest, and the expression `t1 + t2 * 0.3f`
is actually represented with the (approximate) tree of operators:
TensorCwiseBinaryOp<scalar_sum>(t1, TensorCwiseUnaryOp<scalar_mul>(t2, 0.3f))
### Tensor Operations and C++ "auto"
Because Tensor operations create tensor operators, the C++ `auto` keyword
does not have its intuitive meaning. Consider these 2 lines of code:
Tensor<float, 3> t3 = t1 + t2;
auto t4 = t1 + t2;
In the first line we allocate the tensor `t3` and it will contain the
result of the addition of `t1` and `t2`. In the second line, `t4`
is actually the tree of tensor operators that will compute the addition of
`t1` and `t2`. In fact, `t4` is *not* a tensor and you cannot get
the values of its elements:
Tensor<float, 3> t3 = t1 + t2;
cout << t3(0, 0, 0); // OK prints the value of t1(
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
Eigen适用范围广,支持包括固定大小、任意大小的所有矩阵操作,甚至是稀疏矩阵;支持所有标准的数值类型,并且可以扩展为自定义的数值类型;支持多种矩阵分解及其几何特征的求解;它不支持的模块生态系统 [2] 提供了许多专门的功能,如非线性优化,矩阵功能,多项式解算器,快速傅立叶变换等。 Eigen支持多种编译环境,开发人员对库中的实例在多种编译环境下经过测试,以保证其在不同编译环境下的可靠性和实用性。
资源推荐
资源详情
资源评论


















收起资源包目录





































































































共 1613 条
- 1
- 2
- 3
- 4
- 5
- 6
- 17
资源评论

- 简甜XIU091610272023-07-24:我在项目中使用了这个eigen库,代码的可读性和维护性得到了明显提升。
- 三山卡夫卡2023-07-24:这个eigen库的使用方式简单直接,适合初学者上手使用。
- 曹将2023-07-24:使用这个eigen库,我能够高效地进行矩阵计算,提升了我的工作效率。
- 石悦2023-07-24:这个eigen库提供了丰富的功能,对于我的项目帮助很大。
- 透明流动虚无2023-07-24:对于数学计算需求较大的项目,这个eigen库是一个很不错的选择。

Quan_2022
- 粉丝: 48
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 科技成果转化新范式:构建区域创新生态的实践路径.docx
- 科技成果转化新范式:资源整合与价值创造的技术路径.docx
- 科技成果转化新引擎:智能顾问赋能创新生态.docx
- 科技园区成果转化升级:平台驱动的资源优化新模式.docx
- 区域科技成果转化服务的创新实践与效率提升.docx
- 区域科技成果转化服务的生态赋能型营销软文.docx
- 区域科技成果转化服务的增效方案与落地建议.docx
- 区域科技成果转化服务新模式:技术经纪人视角下的创新实践.docx
- 区域科技成果转化服务新模式探索_3.docx
- 数智赋能:突破高校科技成果转化技术瓶颈.docx
- 数智赋能:重构高校院所科技成果转化路径.docx
- 数智引擎驱动科技成果转化新范式.docx
- 数智引擎赋能,打通科技成果转化通道.docx
- 县域科技成果转化新路径:破局与突破的实践探索.docx
- 极简单行阅读器-上班族必备划水摸鱼神器
- 打破传统壁垒:高校院所科技成果转化数智服务平台的创新路径.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
