没有合适的资源?快使用搜索试试~ 我知道了~
机器学习基于记忆增强神经网络的元学习方法研究:快速适应小样本任务的分类与回归
0 下载量 35 浏览量
2025-05-05
11:12:02
上传
评论
收藏 1.57MB PDF 举报
温馨提示
内容概要:本文探讨了带有增强记忆能力的神经网络(Memory-Augmented Neural Networks, MANN)在元学习(meta-learning)任务中的应用。传统深度神经网络需要大量数据进行训练,而在“一次学习”场景中表现不佳。MANN通过引入外部记忆模块,能够快速编码和检索新信息,从而克服这一局限。文中提出了一种新的内存访问机制——最近最少使用访问(Least Recently Used Access, LRUA),该机制仅基于内容进行访问,不依赖位置信息。实验结果显示,MANN在分类和回归任务中表现出色,尤其在少量样本情况下,性能优于传统的LSTM和非参数方法。此外,研究还发现,MANN在面对大量类别时仍能保持较高的准确性,并且在持续学习任务中表现出良好的适应性。 适合人群:对机器学习尤其是深度学习领域有浓厚兴趣的研究人员和技术人员,特别是关注小样本学习和元学习的从业者。 使用场景及目标:①研究小样本学习和快速适应新任务的方法;②探索神经网络结合外部记忆模块在分类和回归任务中的应用;③评估不同内存访问机制的效果,如LRUA和NTM;④为开发更高效的元学习模型提供理论支持和实验依据。 其他说明:本文不仅展示了MANN在具体任务中的优越性能,还讨论了其与人类认知过程的相似性,提出了未来研究方向,包括自动发现最优内存访问机制、应对持续学习中的灾难性遗忘问题以及在主动学习环境下的应用。
资源推荐
资源详情
资源评论



























Meta-Learning with Memory-Augmented Neural Networks
Adam Santoro ADAMSANTORO@GOOGLE.COM
Google DeepMind
Sergey Bartunov SBOS@SBOS.IN
Google DeepMind, National Research University Higher School of Economics (HSE)
Matthew Botvinick BOTVINICK@GOOGLE.COM
Daan Wierstra WIERSTRA@GOOGLE.COM
Timothy Lillicrap COUNTZERO@GOOGLE.COM
Google DeepMind
Abstract
Despite recent breakthroughs in the applications
of deep neural networks, one setting that presents
a persistent challenge is that of “one-shot learn-
ing.” Traditional gradient-based networks require
a lot of data to learn, often through extensive it-
erative training. When new data is encountered,
the models must inefficiently relearn their param-
eters to adequately incorporate the new informa-
tion without catastrophic interference. Architec-
tures with augmented memory capacities, such as
Neural Turing Machines (NTMs), offer the abil-
ity to quickly encode and retrieve new informa-
tion, and hence can potentially obviate the down-
sides of conventional models. Here, we demon-
strate the ability of a memory-augmented neu-
ral network to rapidly assimilate new data, and
leverage this data to make accurate predictions
after only a few samples. We also introduce a
new method for accessing an external memory
that focuses on memory content, unlike previous
methods that additionally use memory location-
based focusing mechanisms.
1. Introduction
The current success of deep learning hinges on the abil-
ity to apply gradient-based optimization to high-capacity
models. This approach has achieved impressive results on
many large-scale supervised tasks with raw sensory input,
such as image classification (He et al., 2015), speech recog-
Proceedings of the 33
rd
International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).
nition (Yu & Deng, 2012), and games (Mnih et al., 2015;
Silver et al., 2016). Notably, performance in such tasks is
typically evaluated after extensive, incremental training on
large data sets. In contrast, many problems of interest re-
quire rapid inference from small quantities of data. In the
limit of “one-shot learning,” single observations should re-
sult in abrupt shifts in behavior.
This kind of flexible adaptation is a celebrated aspect of hu-
man learning (Jankowski et al., 2011), manifesting in set-
tings ranging from motor control (Braun et al., 2009) to the
acquisition of abstract concepts (Lake et al., 2015). Gener-
ating novel behavior based on inference from a few scraps
of information – e.g., inferring the full range of applicabil-
ity for a new word, heard in only one or two contexts – is
something that has remained stubbornly beyond the reach
of contemporary machine intelligence. It appears to present
a particularly daunting challenge for deep learning. In sit-
uations when only a few training examples are presented
one-by-one, a straightforward gradient-based solution is to
completely re-learn the parameters from the data available
at the moment. Such a strategy is prone to poor learning,
and/or catastrophic interference. In view of these hazards,
non-parametric methods are often considered to be better
suited.
However, previous work does suggest one potential strat-
egy for attaining rapid learning from sparse data, and
hinges on the notion of meta-learning (Thrun, 1998; Vi-
lalta & Drissi, 2002). Although the term has been used
in numerous senses (Schmidhuber et al., 1997; Caruana,
1997; Schweighofer & Doya, 2003; Brazdil et al., 2003),
meta-learning generally refers to a scenario in which an
agent learns at two levels, each associated with different
time scales. Rapid learning occurs within a task, for ex-
ample, when learning to accurately classify within a par-
ticular dataset. This learning is guided by knowledge
资源评论



磐基Stack专业服务团队
- 粉丝: 8849
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 自动化软件在油田油井监控系统中现场应用整体措施.doc
- Shotgun is a C++ parallel coordinate descent algorithm (stan
- 基于BP神经网络的股票指数期货价格预测.pptx
- 基于MATLAB辨识系统工具箱的混合系统仿真包装器_A wrapper for hybrid system simula
- 《C语言数据与常量》课件-——-探索编程基础.ppt
- 基座的加工工艺规程设计及程序设计-毕设论文.doc
- 一种去除特征匹配异常值的实时方法,matlab代码_a real-time method to remove featu
- 机械电子制造及其自动化专业课程简介.doc
- Unit1Ready?Go第3页文档.docx
- 于基算符优先分析方法的语法制导翻译程序设计编译课程设计报告书-学位论文.doc
- 高中信息技术教学中移动互联网应用研究-(2).pptx
- matlab软件——矩阵与线性方程组教材课程.ppt
- 门户网站自查报告总结.docx
- 敏捷软件开发项目进度管理探讨论文.doc
- 网络搜索引擎应用研究论文.doc
- 飞凌OK3588-C PCAN驱动
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
